[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Evaluation of Grünwald-Letnikov Variable Fractional-Order Differentiation and Integration Based on the FFT Convolution

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Abstract

The main topic of this research is the development of a new efficient method for solving fractional differential equations in the time domain using the Grünwald-Letnikov (GL) definition of the differintegral operator. The goal is to reduce or, in some cases, eliminate the necessity of introducing the maximum number of samples of the approximation, which is always a trade-off between accuracy, memory consumption, and computational speed. The algorithm involving Fast Fourier Transform and Fast Convolution operations has been proposed. The implementation in two different environments - the MATLAB/Simulink on a PC and on a hardware platform with the STM32H743 microcontroller - is described in this paper and the results of two iterations of experiments are presented. Fast Convolution algorithm is proven to be highly effective for processing block lengths \(N \ge 128\). In the most complex analyzed case (\(N=8192\) samples) on the Intel\(\textregistered \) Core\(^\mathrm{TM}\) i5-8250U CPU reduction of the computation time reached \(85\%\), compared to the implementation of the classic definition characterized by the \(\mathcal {O}(N^2)\) complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brzeziński, D.W., Ostalczyk, P.: The Grunwald-Letnikov formula and its equivalent Horner’s form accuracy comparison and evaluation for application to fractional order PID controllers. In: 2012 17th International Conference on Methods and Models in Automation and Robotics, MMAR 2012 (2012). https://doi.org/10.1109/MMAR.2012.6347821

  2. Brzeziński, D.W., Ostalczyk, P.: About accuracy increase of fractional order derivative and integral computations by applying the Grünwald-Letnikov formula. Commun. Nonlinear Sci. Numer. Simul. (2016). https://doi.org/10.1016/j.cnsns.2016.03.020

    Article  MATH  Google Scholar 

  3. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math. Comput. (1965). https://doi.org/10.2307/2003354

    Article  MathSciNet  MATH  Google Scholar 

  4. Fix, J.: Efficient convolution using the Fast Fourier Transform, Application in C++ (2013). https://github.com/jeremyfix/FFTConvolution

  5. Garrappa, R., Kaslik, E., Popolizio, M.: Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial. Mathematics 2(1), 1–21 (2019). https://doi.org/10.3390/math7050407

    Article  Google Scholar 

  6. Kilbas, A.A., Srivastava, H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science Inc., New York (2006). https://doi.org/10.1016/S0304-0208(06)X8001-5

    Book  MATH  Google Scholar 

  7. Knuth, D.E.: Chapter 1.2.11. Asymptotic representations. In: The Art of Computer Programming. Volume 1: Fundamenal Algorithms, 3rd edn. pp. 107–123. Addison Wesley Longman Publishing Co., Inc. (1997). https://doi.org/10.5555/260999. https://dl.acm.org/doi/book/10.5555/260999

  8. Lorenser, T.: The DSP capabilities of Arm® Cortex-M4 and Cortex-M7 Processors. DSP feature set and benchmarks (2016)

    Google Scholar 

  9. Lyons, R.G.: Understanding Digital Signal Processing. Prentice Hall PIR, Upper Saddle River (2004)

    Google Scholar 

  10. MacDonald, C.L., Bhattacharya, N., Sprouse, B.P., Silva, G.A.: Efficient computation of the Grünwald-Letnikov fractional diffusion derivative using adaptive time step memory. J. Comput. Phys. 297, 221–236 (2015). https://doi.org/10.1016/J.JCP.2015.04.048

    Article  MathSciNet  MATH  Google Scholar 

  11. Matusiak, M.: Fast evaluation of Grünwald-Letnikov variable fractional-order differentiation and integration based on the FFT Convolution - Appendix (2020). https://dx.doi.org/10.24433/CO.8416219.v1

  12. Matusiak, M., Ostalczyk, P.: Problems in solving fractional differential equations in a microcontroller implementation of an FOPID controller. Arch. Electr. Eng. 68(3), 565–577 (2019). https://doi.org/10.24425/aee.2019.129342

    Article  Google Scholar 

  13. Matusiak, R.: Implementing Fast Fourier Transform algorithms of real-valued sequences with the TMS320 DSP platform (2001). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Implementing+Fast+Fourier+Transform+Algorithms+of+Real-Valued+Sequences+With+the+TMS320+DSP+Platform#0

  14. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls Fundamendals and Applications. Advances in Industrial Control. Springer, London (2010). https://doi.org/10.1007/978-1-84996-335-0

    Book  MATH  Google Scholar 

  15. Nussbaumer, H.J.: Fast convolution algorithms. In: Fast Fourier Transform and Convolution Algorithms, 2nd edn., chap. 3, pp. 32–79. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-81897-4_3

  16. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  17. Oustaloup, A.: La commande CRONE: Commande robuste d’ordre non entier. Hermes (1991)

    Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  19. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald-Letnikov method for fractional differential equations. Comput. Math. Appl. 62(3), 902–917 (2011). https://doi.org/10.1016/J.CAMWA.2011.03.054

    Article  MathSciNet  MATH  Google Scholar 

  20. Smith, J.I.: MUS421 Lecture 2 Review of the Discrete Fourier Transform (DFT) (2019)

    Google Scholar 

  21. Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd edn. California Technical Publishing, San Diego (1997)

    Google Scholar 

  22. STMicroelectronics: STM32H742xI/G STM32H743xI/G 32-bit Arm® Cortex(R)-M7 480MHz MCUs, up to 2MB Flash, up to 1MB RAM, 46 com. and analog interfaces. Datasheet - production data (2019)

    Google Scholar 

  23. Valério, D., Trujillo, J.J., Rivero, M., Machado, J.A.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222(8), 1827–1846 (2013). https://doi.org/10.1140/epjst/e2013-01967-y

    Article  Google Scholar 

  24. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3, 231–248 (2000). https://doi.org/10.1089/vbz.2015.1837

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Polish funds of the National Science Center under grant DEC-2016/23/B/ST7/03686.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Matusiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matusiak, M. (2020). Fast Evaluation of Grünwald-Letnikov Variable Fractional-Order Differentiation and Integration Based on the FFT Convolution. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_74

Download citation

Publish with us

Policies and ethics