[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Stabilization of Linear Descriptor Control Systems with Multi-order Fractional Difference of the Caputo-Type

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

  • 1397 Accesses

Abstract

The descriptor linear control systems described by the Caputo-type h-difference multi-order fractional operator are considered. Problems of stability and stabilizability for these class of systems are discussed. Conditions for stability and stabilizability of given system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambroziak, L., Lewon, D., Pawluszewicz, E.: The use of fractional order operators in modeling of RC-electrical systems. Control Cybern. 45(3), 275–288 (2016)

    MATH  Google Scholar 

  2. Bandyopadhyay, B., Kamal, S.: Stabilization and control of fractional order systems: a sliding mode approach. In: Lecture Notes in Electrical Engineering, vol. 317, pp. 55–90, Springer (2015)

    Google Scholar 

  3. Campbell, S.L.: Singular Systems of Differential Equations. Research Notes in Mathematics. Pitman Publishing, San Francisco (1980)

    Google Scholar 

  4. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  5. Darouach, M., Boutat-Baddas, L.: Observers for a class of nonlinear singular systems. IEEE Trans. Autom. Control 53(11), 2627–2633 (2008)

    Article  MathSciNet  Google Scholar 

  6. Kaczorek, T.: Driazin inverse matrix method for fractional descriptor discrete-time linear system. Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 395–399 (2016)

    Google Scholar 

  7. Kaczorek, T.: Decentralized stabilization of fractional positive descriptor continuous-time linear systems. Int. J. Appl. Math. Comput. 28(1), 135–140 (2018)

    Article  MathSciNet  Google Scholar 

  8. Mozyrska, D., Girejko, E., Wyrwas, M.: Comparison of \(h\)-difference fractional operators. In: Lecture Notes in Electrical Engineering, vol. 257, pp. 191–197. Springer (2013)

    Google Scholar 

  9. Mozyrska, D., Pawluszewicz, E., Wyrwas, M.: Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisatin. Int. J. Syst. Sci. 48(4), 788–794 (2017)

    Article  Google Scholar 

  10. Mozyrska, D., Wyrwas, M., Pawluszewicz, E.: Stabilization of linear multi-parameter fractional difference control systems. In: International Conference on Methods and Models in Automation and Robotics MMAR 2015, Poland, pp. 315–319 (2015)

    Google Scholar 

  11. Mozyrska, D., Wyrwas, M.: Stability of discrete fractional linear systems with positive orders. In: Preprints of the 20th World Congress of the International Federation of Automatic Control, Toulouse, France (2017)

    Google Scholar 

  12. Mozyrska, D., Wyrwas, M.: The \(\cal{Z}\)-transform method and delta-type fractional difference operators. Discrete Dyn. Nat. Soc. (2015). Article ID 852734

    Google Scholar 

  13. Mozyrska, D., Wyrwas, M.: Stability by linear approximation and the relation between the stability of difference and differential fractional systems. Mathe. Methods Appl. Sci. 40(11), 4080–4091 (2017)

    Article  MathSciNet  Google Scholar 

  14. Pawluszewicz, E.: Perfect observers for fractional discrete-time linear systems. Kybernetika 52(6), 914–928 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Podlubny, I.: Fractional Differential Systems. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  16. Sajewski, L.: Stabilization of positive descriptor discrete-time linear system with two different fractional orders by decentralized controller. Bull. Pol. Acad. Sci. Tech. Sci. 65(5), 709–714 (2017)

    Google Scholar 

  17. Sierociuk, D., Dzieliński, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogenous media using fractional calculus. Philos. Trans. Roy. Soc. Math. Phys. Eng. Sci. 371(1990) (2013). Article Number: 20120146

    Google Scholar 

  18. Wyrwas, M., Pawluszewicz, E., Girejko, E.: Stability of nonlinear \(h\)-difference systems with \(n\) fractional orders. Kybernetika 51(1), 112–136 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, H., Wu, D., Cao, J., Zhang, H.: Stability Analysis for fractional-order linear singular delay differential systems. Discrete Dyn. Nat. Soc. (2014). Article ID 850279

    Google Scholar 

  20. Zhang, L.: A chacterization of the Drazin inverse. Linear Algebra Appl. 335, 183–188 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work has been carried out in the framework of Bialystok University Technology grant No WZ/WM/1/2019 and financed from the funds for science by the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Pawluszewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pawluszewicz, E. (2020). On Stabilization of Linear Descriptor Control Systems with Multi-order Fractional Difference of the Caputo-Type. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_73

Download citation

Publish with us

Policies and ethics