Abstract
The descriptor linear control systems described by the Caputo-type h-difference multi-order fractional operator are considered. Problems of stability and stabilizability for these class of systems are discussed. Conditions for stability and stabilizability of given system are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambroziak, L., Lewon, D., Pawluszewicz, E.: The use of fractional order operators in modeling of RC-electrical systems. Control Cybern. 45(3), 275–288 (2016)
Bandyopadhyay, B., Kamal, S.: Stabilization and control of fractional order systems: a sliding mode approach. In: Lecture Notes in Electrical Engineering, vol. 317, pp. 55–90, Springer (2015)
Campbell, S.L.: Singular Systems of Differential Equations. Research Notes in Mathematics. Pitman Publishing, San Francisco (1980)
Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2008)
Darouach, M., Boutat-Baddas, L.: Observers for a class of nonlinear singular systems. IEEE Trans. Autom. Control 53(11), 2627–2633 (2008)
Kaczorek, T.: Driazin inverse matrix method for fractional descriptor discrete-time linear system. Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 395–399 (2016)
Kaczorek, T.: Decentralized stabilization of fractional positive descriptor continuous-time linear systems. Int. J. Appl. Math. Comput. 28(1), 135–140 (2018)
Mozyrska, D., Girejko, E., Wyrwas, M.: Comparison of \(h\)-difference fractional operators. In: Lecture Notes in Electrical Engineering, vol. 257, pp. 191–197. Springer (2013)
Mozyrska, D., Pawluszewicz, E., Wyrwas, M.: Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisatin. Int. J. Syst. Sci. 48(4), 788–794 (2017)
Mozyrska, D., Wyrwas, M., Pawluszewicz, E.: Stabilization of linear multi-parameter fractional difference control systems. In: International Conference on Methods and Models in Automation and Robotics MMAR 2015, Poland, pp. 315–319 (2015)
Mozyrska, D., Wyrwas, M.: Stability of discrete fractional linear systems with positive orders. In: Preprints of the 20th World Congress of the International Federation of Automatic Control, Toulouse, France (2017)
Mozyrska, D., Wyrwas, M.: The \(\cal{Z}\)-transform method and delta-type fractional difference operators. Discrete Dyn. Nat. Soc. (2015). Article ID 852734
Mozyrska, D., Wyrwas, M.: Stability by linear approximation and the relation between the stability of difference and differential fractional systems. Mathe. Methods Appl. Sci. 40(11), 4080–4091 (2017)
Pawluszewicz, E.: Perfect observers for fractional discrete-time linear systems. Kybernetika 52(6), 914–928 (2016)
Podlubny, I.: Fractional Differential Systems. Academic Press, San Diego (1999)
Sajewski, L.: Stabilization of positive descriptor discrete-time linear system with two different fractional orders by decentralized controller. Bull. Pol. Acad. Sci. Tech. Sci. 65(5), 709–714 (2017)
Sierociuk, D., Dzieliński, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogenous media using fractional calculus. Philos. Trans. Roy. Soc. Math. Phys. Eng. Sci. 371(1990) (2013). Article Number: 20120146
Wyrwas, M., Pawluszewicz, E., Girejko, E.: Stability of nonlinear \(h\)-difference systems with \(n\) fractional orders. Kybernetika 51(1), 112–136 (2015)
Zhang, H., Wu, D., Cao, J., Zhang, H.: Stability Analysis for fractional-order linear singular delay differential systems. Discrete Dyn. Nat. Soc. (2014). Article ID 850279
Zhang, L.: A chacterization of the Drazin inverse. Linear Algebra Appl. 335, 183–188 (2001)
Acknowledgments
The work has been carried out in the framework of Bialystok University Technology grant No WZ/WM/1/2019 and financed from the funds for science by the Polish Ministry of Science and Higher Education.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Pawluszewicz, E. (2020). On Stabilization of Linear Descriptor Control Systems with Multi-order Fractional Difference of the Caputo-Type. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_73
Download citation
DOI: https://doi.org/10.1007/978-3-030-50936-1_73
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50935-4
Online ISBN: 978-3-030-50936-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)