[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Synthesis and Generation of Random Fields in Nonlinear Environment

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

Abstract

In the paper, a generalisation of the method used for adaptive generation of random fields in linear environment to the case of synthesis and generation of such fields in a nonlinear environment is presented. The random fields to be synthesised and generated are defined by their power spectral density functions. Realisations of the random fields to be generated are obtained using a synthesis and simulation method of power spectral defined random processes based on multisine random time-series. Generation of the corresponding random fields in the nonlinear environment is aided by active noise control systems used to attenuate unwanted random noise present in this environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giri, F., Bai, E.W. (eds.): Block-oriented Nonlinear System Identification. Lecture Notes in Control and Information Sciences. Springer, London (2010)

    MATH  Google Scholar 

  2. Bendat, J.S., Piersol, A.G.: Random Data Analysis and Measurement Procedures. Wiley, New York (1986)

    MATH  Google Scholar 

  3. Figwer, J.: Synthesis and Simulation of Random Processes, Zeszyty Naukowe Politechniki Ślaskiej, Seria Automatyka, Zeszyt nr 126, Gliwice (1999)

    Google Scholar 

  4. Figwer, J.: Multisine Transformation - Properties and Applications, Nonlinear Dynamics, pp. 331–346. Kluwer Academic Publishers, New York (2004)

    MATH  Google Scholar 

  5. Figwer, J.: Identyfikacja modeli Wienera z wykorzystaniem wielosinusoidalnych losowych sygnałów pobudzajacyc. In: Materiły XV Krajowej Konferencji Automatyki, Warszawa, pp. 343–348 (2005)

    Google Scholar 

  6. Figwer, J.: Multisine Random Number Generator. Jacek Skalmierski Computer Studio, Gliwice (2007)

    Google Scholar 

  7. Figwer, J.: Nonlinear secondary path model identification. In: Proceedings of the 14th International Congress on Sound and Vibration, Cairns (2007)

    Google Scholar 

  8. Figwer, J.: Synthesis and generation of piece-wise stationary random acoustic local fields. In: Proceedings of the 15th International Congress on Sound and Vibration, Daejeon (2008)

    Google Scholar 

  9. Figwer, J.: Adaptive Synthesis and Generation of Random Fields. Jacek Skalmierski Computer Studio, Gliwice (2008)

    Google Scholar 

  10. Figwer, J.: Adaptive generation of acoustic local fields aided by active noise control systems. In: Proceedings of the Sixteenth International Congress on Sound and Vibration, Kraków (2009)

    Google Scholar 

  11. Figwer, J.: A New Approach to Acoustic Distributed Field Shaping, Mechanics, pp. 65–68 (2009)

    Google Scholar 

  12. Figwer, J.: Modelowanie systemów nieliniowych. In: Grzech, A., Juszczyszyn, K., Kwaśnicka, H., Nguyen, N.T. (eds.), Inżynieria Wiedzy i Systemy Ekspertowe, pp. 89–100. Akademicka Oficyna Wydawnicza EXIT, Warszawa (2009)

    Google Scholar 

  13. Figwer, J.: Secondary path model identification in active noise control. In: Proceedings of the 15th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 110–113 (2010)

    Google Scholar 

  14. Figwer, J.: Frequency response identification in the case of periodic disturbances. In: Proceedings of the 16th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 1–4 (2011)

    Google Scholar 

  15. Figwer, J.: Wielosinusoidalne procesy losowe. Teoria i zastosowania, Akademicka Oficyna Wydawnicza EXIT, Warszawa (2012)

    Google Scholar 

  16. Figwer, J.: Hammerstein system identification with multisine excitations - quantized low-power observations case. In: Proceedings of the 18th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 127–131 (2013)

    Google Scholar 

  17. Figwer, J.: Continuous-time nonlinear block-oriented dynamic system identification from sampled step and step-like responses. In: Proceedings of the 23rd International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 77–82 (2018)

    Google Scholar 

  18. Figwer, J.: Identification of multichannel nonlinear systems excited by realisations of mutivariate orthogonal multisine random time-series. In: Proceedings of the 24th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 496–500 (2019)

    Google Scholar 

  19. Figwer J., Michalczyk, M.: On initialization of adaptation in active noise control. In: Proceedings of the 23rd International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 533–537 (2018)

    Google Scholar 

  20. Figwer J., Michalczyk, M., Główka, T.: Accelerating the rate of convergence for LMS-like on-line identification and adaptation algorithms. Pt. 1, Basic ideas. In: Proceedings of the 22nd International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 247–250 (2017)

    Google Scholar 

  21. George, N.V., Panda, G.: Advances in active noise control: a survey, with emphasis on recent nonlinear techniques. Signal Process. 92, 363–377 (2013)

    Article  Google Scholar 

  22. Giannakis, G.B., Serpedin, E.: A bibliography on nonlinear system identification. Signal Process. 81, 533–580 (2001)

    Article  Google Scholar 

  23. Główka T., Figwer, J.: Identification of linear subsystem for simple block-oriented nonlinear systems working in closed-loop - higher order spectra approach. In: Proceedings of the 18th International Conference on System Theory, Control and Computing, Sinaia, pp. 909–914 (2014)

    Google Scholar 

  24. Hansen, C.H., Snyder, S.D.: Active Control of Noise and Vibration. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  25. Maliński, Ł., Figwer, J.: Nonlinear system identification using memetic algorithms. In: The 20th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 1086–1091 (2015)

    Google Scholar 

  26. Michalczyk, M.I., Główka, T., Figwer, J.: Adaptation in active noise control - a simulation case study. In: Proceedings of the 21st International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 420–425 (2016)

    Google Scholar 

  27. Mzyk, G.: Combined Parametric-Nonparametric Identification of Block-Oriented Systems. Lecture Notes in Control and Information Sciences. Springer, Cham (2014)

    Book  Google Scholar 

  28. Press, W.H., Teukolsky, S.A., Wetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Sydney (1992)

    MATH  Google Scholar 

  29. Schoukens, M., Tiels, K.: Identification of block-oriented nonlinear systems starting from linear approximations: a survey. Automatica 85, 272–292 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The partial financial support of this research by The Polish Ministry of Science and Higher Education is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Figwer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Figwer, J. (2020). Synthesis and Generation of Random Fields in Nonlinear Environment. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_56

Download citation

Publish with us

Policies and ethics