Abstract
A classification of feedback linearizable mechanical control system with 2 DOF is proposed. We develop 3 types of linearization and for each we establish a normal form. Then, we characterize each class and calculate linearizing outputs. As a consequence, necessary and sufficient linearizability conditions are formulated for all cases. We illustrate our result by mechanical linearization of the TORA system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nijmeijer, H., van der Schaft, A.J.: Nonlinear Dynamical Control Systems. Springer-Verlag, New York (1990). ISBN 978-0-387-97234-3
Respondek, W.: Introduction to geometric nonlinear control; linearization, observability and decoupling. In: Mathematical Control Theory No.1, Lecture Notes Series of the Abdus Salam, ICTP, vol. 8, Trieste (2001)
Jakubczyk, B., Respondek, W.: On linearization of control systems. Bull. Acad. Polonaise Sci. Ser. Sci. Math. 28, 517–522 (1980)
Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer-Verlag, Berlin (1995)
Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Modeling, Analysis and Design for Simple Mechanical Control Systems. Springer-Verlag, New York (2004)
Respondek, W., Ricardo, S.: Equivariants of mechanical control systems. SIAM J. Control Optim. 51(4), 3027–3055 (2013)
Murray, M., Rathinam, M., Sluis, W.: Differential flatness of mechanical control systems: a catalog of prototype systems. In: ASME International Mechanical Engineering Congress and Exposition. Citeseer (1995)
Respondek, W., Ricardo, S.: On linearization of mechanical control systems. IFAC Proc. Volumes 45(19), 102–107 (2012)
van der Schaft, A.: Linearization of Hamiltonian and gradient systems. IMA J. Math. Control Inf. 1, 185–198 (1984)
Wan, C., Bernstein, D., Coppola, V.: Global stabilization of the oscillating eccentric rotor. Nonlinear Dyn. 10, 49–62 (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Nowicki, M., Respondek, W. (2020). A Classification of Feedback Linearizable Mechanical Systems with 2 Degrees of Freedom. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_54
Download citation
DOI: https://doi.org/10.1007/978-3-030-50936-1_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50935-4
Online ISBN: 978-3-030-50936-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)