[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Design of Terminal Sliding Mode Controllers with Application to Automotive Control Systems with Model Uncertainties

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

  • 1399 Accesses

Abstract

The paper describes the design of terminal sliding model controllers for several types of dynamical systems with model uncertainties. First- and second-order representations of the systems are investigated. These representations are mathematically described by matrix differential equations. Both linear and non-linear systems are considered. Sliding surfaces are defined by equations involving the state of the system and the expected trajectory. Finite-time stability of the corresponding closed-loop systems is proved via Lyapunov stability theory. Applications of the designed controllers are illustrated on automotive control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartosiewicz, A.: Time-varying sliding modes for second-order systems. IEE Proc. - Control Theory Appl. 143(5), 455–462 (1996)

    Article  Google Scholar 

  2. Drakunov, S., Ozguner, U., Dix, P., Ashrafi, B.: ABS control using optimum search via sliding modes. IEEE Trans. Control Syst. Technol. 3(1), 79–85 (1995)

    Article  Google Scholar 

  3. Feng, Y., Xinghuo. X., Zheng, J.: Nonsingular terminal sliding mode control of uncertain multivariable systems. In: Proceedings of the 2006 International Workshop on Variable Structure Systems, Alghero, Italy, pp. 196–201 (2006)

    Google Scholar 

  4. Feng, Y., Yu, X., Zheng, Z.: Second-order terminal sliding mode control of input-delay systems. Asian J. Control 8(1), 12–20 (2006)

    Article  MathSciNet  Google Scholar 

  5. Fu, L., Ozguner, U., Haskara, I.: Automotive applications of sliding mode control. IFAC Proc. Vol. 44(1), 1898–1903 (2011)

    Article  Google Scholar 

  6. Haskara, I., Ozguner, U., Winkelman, J.: Wheel slip control for antispin acceleration via dynamic spark advance. Control Eng. Pract. 8(10), 1135–1148 (2000)

    Article  Google Scholar 

  7. Hong, Y., Yang, G., Cheng, D., Spurgeon, S.: A new approach to terminal sliding mode control design. Asian J. Control 7(2), 177–181 (2005)

    Article  Google Scholar 

  8. Kim, Y.-W., Rizzoni, G., Utkin, V.I.: Developing a fault tolerant power-train control system by integrating design of control and diagnostics. Int. J. Robust Nonlinear Control 11(11), 1095–1114 (2001)

    Article  MATH  Google Scholar 

  9. Man, Z., Yu, X.: Terminal sliding mode control of MIMO linear systems. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 44(11), 1065–1070 (1997)

    Article  MathSciNet  Google Scholar 

  10. Mobayen, S., Majd, V., Sojoodi, M.: An LMI-based composite nonlinear feedback terminal sliding-mode controller design for disturbed MIMO systems. Math. Comput. Simul. 85(11), 1–10 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mon, Y.J.: Terminal sliding mode fuzzy-PDC control for nonlinear systems. Int. J. Sci. Technol. Res. 2(4), 218–221 (2013)

    Google Scholar 

  12. Moulay, E., Peruquetti, W.: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323(2), 1430–1443 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rasvan, V.B.: Stability and sliding modes for a class of nonlinear time delay systems. Math. Bohemica 136(2), 155–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reichhartinger, M., Horn, M.: Application of higher order sliding-mode concepts to a throttle actuator for gasoline engines. IEEE Trans. Industr. Electron. 56(9), 3322–3329 (2009)

    Article  Google Scholar 

  16. Sam, Y., Osman, J.H.S., Ghani, M.R.A.: A class of proportional-integral sliding mode control with application to active suspension system. Syst. Control Lett. 51(3–4), 217–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Skruch, P.: A terminal sliding mode control of disturbed nonlinear second-order dynamical systems. J. Comput. Nonlinear Dyn. 11(5), 054501 (2016)

    Article  Google Scholar 

  18. Skruch, P., Długosz, M.: Design of terminal sliding mode controllers for disturbed non-linear systems described by matrix differential equations of the second and first orders. Appl. Sci. 9(11), 2325 (2019)

    Article  Google Scholar 

  19. Skruch, P., Długosz, M.: A sliding mode controller design for thermal comfort in buildings. Eng. Trans. 64(4), 475–489 (2019)

    Google Scholar 

  20. Skruch, P., Dlugosz, M., Mitkowski, W.: Stability analysis of a series of cars driving in adaptive cruise control mode. In: Mitkowski, W., Kacprzyk, J., Oprzedkiewicz, K., Skruch, P. (eds.) Trends in Advanced Intelligent Control, Optimization and Automation. Advances in Intelligent Systems and Computing, vol. 577, pp. 168-177. Springer, Cham (2017)

    Google Scholar 

  21. Tao, C.W., Taur, J.S.: Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties. IEEE Trans. Syst. Man Cybern.—Part B: Cybern. 34(1), 255–262 (2004)

    Article  Google Scholar 

  22. Wang, X., Guo, J., Tang, S.: Neural network-based multivariable fixed-time terminal sliding mode control for re-entry vehicles. IET Control Theory Appl. 12(12), 1763–1772 (2018)

    Article  MathSciNet  Google Scholar 

  23. Wang, Y., Luo, G., Gu, L., Li, X.: Fractional-order nonsingular terminal sliding mode control of hydraulic manipulators using time delay estimation. J. Vib. Control 22(19), 3998–4011 (2016)

    Article  Google Scholar 

  24. Xi, Z., Hesketh, T.: On discrete time terminal sliding mode control for nonlinear systems with uncertainty. In: Proceedings of the 2010 Americal Control Conference, Baltimore, USA, pp. 980–984 (2010)

    Google Scholar 

  25. Xiang, W., Huangpu, Y.: Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties. Commun. Nonlinear Sci. Numer. Simul. 15(6), 3241–3247 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhihong, M., Paplinski, A.P., Wu, H.R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39(12), 2464–2469 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhuang, K., Su, H., Zhang, K., Chu, J.: Adaptive terminal sliding mode control for high-order nonlinear dynamic systems. J. Zhejiang Univ.-Sci. A 4(1), 58–63 (2003)

    Article  Google Scholar 

  29. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54(4), 305–309 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Skruch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skruch, P. (2020). Design of Terminal Sliding Mode Controllers with Application to Automotive Control Systems with Model Uncertainties. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_13

Download citation

Publish with us

Policies and ethics