Abstract
The paper deals with the development of a modelling and prediction scheme capable of estimating a remaining useful life of ball bearings. In particular, a multiple model-based Takagi-Sugeno scheme is developed, which is able to follow the system degradation over the time and predict it in the future. Contrarily to the typical framework, multiple models designed with historical data are used to support diagnostic decisions. In particular, health status determination of the currently operating bearing is supported by the knowledge gathered from the preceding bearings, which went through the run-to-failure process. In both historical and actual bearing cases an efficient modelling scheme with low computational burden is proposed. It is also shown how to exploit it for predicting the bearings remaining useful life. Finally, the proposed approach is applied to data gathered from the PRONOSTIA Platform, designed for the purpose of IEEE Data Challenge pertaining remaining useful life estimation of ball bearings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anis, M.D.: Towards remaining useful life prediction in rotating machine fault prognosis: an exponential degradation model. In: 2018 Condition Monitoring and Diagnosis (CMD), pp. 1–6 (2018). https://doi.org/10.1109/CMD.2018.8535765
Arablouei, R., Doğançay, K.: Modified quasi-OBE algorithm with improved numerical properties. Sig. Process. 93(4), 797–803 (2013)
Gebraeel, N., Lawley, M., Li, R., Ryan, J.: Residual-life distributions from component degradation signals: a bayesian approach. IIE Trans. 37(6), 543–557 (2005)
Hu, H., Tang, B., Gong, X., Wei, W., Wang, H.: Intelligent fault diagnosis of the high-speed train with big data based on deep neural networks. IEEE Trans. Ind. Inf. 13(4), 2106–2116 (2017). https://doi.org/10.1109/TII.2017.2683528
Kraus, T., Mandour, G.I., Joachim, D.: Estimating the error bound in QOBE vowel classification. In: 2007 50th Midwest Symposium on Circuits and Systems, pp. 369–372 (2007). https://doi.org/10.1109/MWSCAS.2007.4488608
Li, N., Lei, Y., Lin, J., Ding, S.: An improved exponential model for predicting remaining useful life of rolling element bearings. IEEE Trans. Ind. Electron. 62(12), 7762–7773 (2015)
Loutas, H., Roulias, D., Geogoulos, G.: Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic E-support vectors regression. IEEE Trans. Reliab. 62(4), 821–832 (2013). https://doi.org/10.1109/TR.2013.2285318
Miao, Q., Xie, L., Cui, H., Pecht, M.: Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 53(6), 805–810 (2012). https://doi.org/10.1016/j.microrel.2012.12.004
Nectoux, P.R.G., Medjaher, K., Ramasso, E., Morello, B., Zerhouni, N., Varnier., C.: Pronostia: an experimental platform for bearings accelerated life test. In: 2012 IEEE International Conference on Prognostics and Health Management, Denver, CO, USA (2012)
Pazera, M., Buciakowski, M., Witczak, M.: Robust multiple sensor fault-tolerant control for dynamic non-linear systems: application to the aerodynamical twin-rotor system. Int. J. Appl. Math. Comput. Sci. 28(2), 297–308 (2018). https://doi.org/10.2478/amcs-2018-0021
Rutkowski, T., Łapa, K., Nielek, R.: On explainable fuzzy recommenders and their performance evaluation. Int. J. Appl. Math. Comput. Sci. 29(3), 595–610 (2019). https://doi.org/10.2478/amcs-2019-0044
Saha, B., Goebel, K., Poll, S., Christophersen, J.: Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Trans. Instrum. Meas. 58(2), 291–296 (2009)
Si, X.S., Wang, W., Hu, C.H., Zhou, D.H.: Remaining useful life estimation - a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011). https://doi.org/10.1016/j.ejor.2010.11.018
Simani, S., Farsoni, S., Castaldi, P.: Data-driven techniques for the fault diagnosis of a wind turbine benchmark. Int. J. Appl. Math. Comput. Sci. 28(2), 247–268 (2018). https://doi.org/10.2478/v10006-008-0046-3
Singleton, K.R., Strangas, E.G., Cui, H., Aviyente, S.: Extended Kalman filtering for remaining-useful-life estimation of bearings. IEEE Trans. Ind. Electron. 62(3), 1781–1790 (2015). https://doi.org/10.1016/j.microrel.2012.12.004
Sutrisno, E., Oh, H., Vasan, A.S.S.: Estimation of remaining useful life of ball bearings using data driven methodologies. In: 2012 IEEE Conference on Prognostics and Health Management (PHM) (2012). https://doi.org/10.1109/ICPHM.2012.6299548
Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)
Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems. Lectures Notes in Electrical Engineering, vol. 266. Springer International Publisher. Heidelberg (2014)
Zadeh, L.A.: Knowledge representation in fuzzy logic. In: Zadeh, L.A. Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers, pp. 764–774. World Scientific (1996)
Zhang, L., Mu, Z., Sun, C.: Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter. IEEE Access 6, 17729–17740 (2018)
Acknowledgment
The work was supported by the National Science Centre of Poland under Grant: UMO-2017/27/B/ST7/00620.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Witczak, M., Lipiec, B., Mrugalski, M., Stetter, R. (2020). A Fuzzy Logic Approach to Remaining Useful Life Estimation of Ball Bearings. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_117
Download citation
DOI: https://doi.org/10.1007/978-3-030-50936-1_117
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50935-4
Online ISBN: 978-3-030-50936-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)