[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classification of Ulcerative Colitis Severity in Colonoscopy Videos Using Vascular Pattern Detection

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

Abstract

Endoscopic measurement of ulcerative colitis (UC) severity is important since endoscopic disease severity may better predict future outcomes in UC than symptoms. However, it is difficult to evaluate the endoscopic severity of UC objectively because of the non-uniform nature of endoscopic features associated with UC, and large variations in their patterns. In this paper, we propose a method to classify UC severity in colonoscopy videos by detecting the vascular (vein) patterns which are defined specifically in this paper as the amounts of blood vessels in the video frames. To detect these vascular patterns, we use Convolutional Neural Network (CNN) and image preprocessing methods. The experiments show that the proposed method for classifying UC severity by detecting these vascular patterns increases classification effectiveness significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. U.S. National Library of Medicine: Ulcerative colitis. https://ghr.nlm.nih.gov/condition/ulcerative-colitis. Accessed 04 Apr 2020

  2. Xie, T., et al.: Ulcerative Colitis Endoscopic Index of Severity (UCEIS) versus Mayo Endoscopic Score (MES) in guiding the need for colectomy in patients with acute severe colitis. Gastroenterol. Rep. 6(1), 38–44 (2018)

    Article  Google Scholar 

  3. Paine, E.: Colonoscopic evaluation in ulcerative colitis. Gastroenterol. Rep. 2(3), 161–168 (2014)

    Article  Google Scholar 

  4. D’Haens, G., et al.: A review of activity indices and efficacy end points for clinical trials of medical therapy in adults with ulcerative colitis. Gastroenterology 132(2), 763–786 (2007)

    Article  Google Scholar 

  5. Kappelman, M.D., Rifas-Shiman, S.L., Kleinman, K., et al.: The prevalence and geographic distribution of Crohn’s disease and ulcerative colitis in the United States. Clin. Gastroenterol. Hepatol. 5(12), 1424–1429 (2007)

    Article  Google Scholar 

  6. Rutter, M., Saunders, B., et al.: Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 126(2), 451–459 (2004)

    Article  Google Scholar 

  7. Nosato, H., Sakanashi, H., Takahashi, E., Murakawa, M.: An objective evaluation method of ulcerative colitis with optical colonoscopy images based on higher order local auto-correlation features. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 89–92. IEEE (2014)

    Google Scholar 

  8. Tejaswini, S.V.L.L., Mittal, B., Oh, J., Tavanapong, W., Wong, J., de Groen, P.C.: Enhanced approach for classification of ulcerative colitis severity in colonoscopy videos using CNN. In: Bebis, G., et al. (eds.) ISVC 2019. LNCS, vol. 11845, pp. 25–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33723-0_3

    Chapter  Google Scholar 

  9. Alammari, A., Islam, A.R., Oh, J., Tavanapong, W., Wong, J., De Groen, P.C.: Classification of ulcerative colitis severity in colonoscopy videos using CNN. In: Proceedings of the 9th International Conference on Information Management and Engineering, Barcelona, Spain, pp. 139–144 (2017)

    Google Scholar 

  10. Stidham, R.W., et al.: Performance of a deep learning model vs human reviewers in grading endoscopic disease severity of patients with ulcerative colitis. JAMA Netw. Open 2(5), e193963 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ozawa, T., et al.: Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest. Endosc. 89(2), 416–421 (2019)

    Article  Google Scholar 

  12. Fan, L., Zhang, F., Fan, H., Zhang, C.: Brief review of image denoising techniques. Vis. Comput. Ind. Biomed. Art 2(1) (2019). Article number: 7. https://doi.org/10.1186/s42492-019-0016-7

  13. Lo, S.C., Lou, S.L., Lin, J.S., Freedman, M.T., Chien, M.V., Mun, S.K.: Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imaging 14(4), 711–718 (1995)

    Article  Google Scholar 

  14. Ramasubramanian, K., Singh, A.: Deep learning using Keras and TensorFlow. In: Machine Learning Using R, pp. 667–688. Apress, Berkeley (2019)

    Google Scholar 

  15. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  16. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89 (2018)

    Google Scholar 

  17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  18. Zhang, W., Tang, P., Zhao, L.: Remote sensing image scene classification using CNN-CapsNet. Remote Sens. 11(5), 494 (2019)

    Article  Google Scholar 

  19. Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.: Deep EndoVO: a recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 275, 1861–1870 (2017)

    Article  Google Scholar 

  20. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JungHwan Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mokter, M.F., Oh, J., Tavanapong, W., Wong, J., de Groen, P.C. (2020). Classification of Ulcerative Colitis Severity in Colonoscopy Videos Using Vascular Pattern Detection. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics