Abstract
Large logistics service providers often need to containerize and route thousands or millions of items per year. In practice, companies specify business rules of how to pack and transport items from their origin to destination. Handling and respecting those business rules manually is a complex and time-consuming task. We propose a variant of the variable sized bin packing problem applicable to the containerization process occurring at logistics service providers. This novel model variant extends the bin packing problem with color constraints by adding multiple item mixing constraints. We present a binary integer program along with a first-fit decreasing heuristic and compare the performance on instances from a global logistics service provider. The numerical results indicate promising results to solve this computationally hard combinatorial optimization problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Uniqueness indicates how many items are sharing the same property value in percent, averaged over all rules of the instances.
- 2.
We define MIP gap as \(\frac{|best\_bound - incumbent|}{max(|best\_bound|, |incumbent|)}\).
References
Belov, G., Scheithauer, G.: A cutting plane algorithm for the one-dimensional cutting stock problem with multiple stock lengths. Euro. J. Oper. Res. 141(2), 274–294 (2002)
Capua, R., Frota, Y., Ochi, L.S., Vidal, T.: A study on exponential-size neighborhoods for the bin packing problem with conflicts. J. Heuristics 24(4), 667–695 (2018). https://doi.org/10.1007/s10732-018-9372-2
Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017)
Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_35
Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin-packing — an updated survey. In: Ausiello, G., Lucertini, M., Serafini, P. (eds.) Algorithm Design for Computer System Design. ICMS, vol. 284, pp. 49–106. Springer, Vienna (1984). https://doi.org/10.1007/978-3-7091-4338-4_3
Coffman, E.G., Garey, M., Johnson, D.: Approximation algorithms for bin packing: a survey. Approximation algorithms for NP-hard problems, pp. 46–93 (1996)
Crévits, I., Hanafı, S., Mahjoub, A.R., Taktak, R., Wilbaut, C.: A special case of variable-sized bin packing problem with color constraints. In: 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 1150–1154. IEEE (2019)
Dawande, M., Kalagnanam, J., Sethuraman, J.: Variable sized bin packing with color constraints. Electron. Notes Discrete Math. 7, 154–157 (2001)
Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: mathematical models and exact algorithms. Euro. J. Oper. Res. 255(1), 1–20 (2016)
Delorme, M., Iori, M., Martello, S.: Bpplib: a library for bin packing and cutting stock problems. Optimization Lett. 12(2), 235–250 (2018)
Epstein, L., Levin, A.: On bin packing with conflicts. SIAM J. Optimization 19(3), 1270–1298 (2008)
Fasano, G.: A mip approach for some practical packing problems: balancing constraints and tetris-like items. Q. J. Belgian, French and Italian Oper. Res. Soc. 2(2), 161–174 (2004)
Friesen, D.K., Langston, M.A.: Variable sized bin packing. SIAM J. Comput. 15(1), 222–230 (1986)
Haouari, M., Serairi, M.: Heuristics for the variable sized bin-packing problem. Comput. Oper. Res. 36(10), 2877–2884 (2009)
Johnson, D.S.: Near-optimal bin packing algorithms. Ph.D. thesis, Massachusetts Institute of Technology (1973)
Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3(4), 299–325 (1974)
Kang, J., Park, S.: Algorithms for the variable sized bin packing problem. Euro. J. Oper. Res. 147(2), 365–372 (2003)
Kochetov, Y., Kondakov, A.: Vns matheuristic for a bin packing problem with a color constraint. Electron. Notes Discrete Math. 58, 39–46 (2017)
Kondakov, A., Kochetov, Y.: A core heuristic and the branch-and-price method for a bin packing problem with a color constraint. In: Eremeev, A., Khachay, M., Kochetov, Y., Pardalos, P. (eds.) OPTA 2018. CCIS, vol. 871, pp. 309–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93800-4_25
Korte, B., Vygen, J.: Bin-Packing, pp. 407–422. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-76919-4_18
Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing and cutting stock problems. J. Oper. Res. Soc. 55(7), 705–716 (2004)
Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. Wiley-Interscience series in discrete mathematics and optimization (1990)
Pisinger, D., Sigurd, M.: The two-dimensional bin packing problem with variable bin sizes and costs. Discrete Optimization 2(2), 154–167 (2005)
Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price algorithm. INFORMS J. Comput. 25(2), 244–255 (2013)
Statista Research Department: Estimated containerized cargo flows on major container trade routes in 2018, by trade route (in million teus). Accessed May 2020. https://www.statista.com/statistics/253988/estimated-containerized-cargo-flows-on-major-container-trade-routes/
UN Conference on Trade and Development: Review of maritime transport 2013. Technical report, United Nations (2013)
World Shipping Council: World shipping council trade statistics. Accessed May 2020. http://www.worldshipping.org/about-the-industry/global-trade/trade-statistics
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Anand, S., Guericke, S. (2020). A Bin Packing Problem with Mixing Constraints for Containerizing Items for Logistics Service Providers. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds) Computational Logistics. ICCL 2020. Lecture Notes in Computer Science(), vol 12433. Springer, Cham. https://doi.org/10.1007/978-3-030-59747-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-59747-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59746-7
Online ISBN: 978-3-030-59747-4
eBook Packages: Computer ScienceComputer Science (R0)