Abstract
Undersampling the k-space in MRI allows saving precious acquisition time, yet results in an ill-posed inversion problem. Recently, many deep learning techniques have been developed, addressing this issue of recovering the fully sampled MR image from the undersampled data. However, these learning based schemes are susceptible to differences between the training data and the image to be reconstructed at test time. One such difference can be attributed to the bias field present in MR images, caused by field inhomogeneities and coil sensitivities. In this work, we address the sensitivity of the reconstruction problem to the bias field and propose to model it explicitly in the reconstruction, in order to decrease this sensitivity. To this end, we use an unsupervised learning based reconstruction algorithm as our basis and combine it with a N4-based bias field estimation method, in a joint optimization scheme. We use the HCP dataset as well as in-house measured images for the evaluations. We show that the proposed method improves the reconstruction quality, both visually and in terms of RMSE.
M. Gaillochet and K. C. Tezcan – Equal contribution. This work was partially funded by grant 205321_173016 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van Ginneken, B., Sanchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Tezcan, K.C., Baumgartner, C.F., Luechinger, R., Pruessmann, K.P., Konukoglu, E.: MR image reconstruction using deep density priors. IEEE Trans. Med. Imaging 38(7), 1633–1642 (2019)
Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theor. 52(4), 1289–1306 (2006)
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)
Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel MR imaging. J. Magn. Reson. Imaging 36(1), 55–72 (2012)
Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)
Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)
SimpleITK: N4 Bias Field Correction, https://simpleitk.readthedocs.io/en/master/link_N4BiasFieldCorrection_docs.html. Accessed 12 March 2020
Sled, J.G., Pike, G.B.: Understanding intensity non-uniformity in MRI. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 614–622. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056247
Meyer, C.R., Bland, P.H., Pipe, J.: Retrospective correction of intensity inhomogeneities in MRI. IEEE Trans. Med. Imaging 14(1), 36–41 (1995)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)
Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)
Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26(3), 839–851 (2005)
Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)
Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The wu-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
Human Connectome Reference Manual, https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf. Accessed 4 March 2020
Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, Olivio, Konukoglu, Ender: Semi-supervised and task-driven data augmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_3
Volpi, R., Namkoong, H., Sener, O., Duchi, J., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. NeurIPS 31, 5334–5344 (2018)
Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35
Samsonov, A.A., Kholmovski, E.G., Parker, D.L., Johnson, C.R.: POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. MRM 52(6), 1397–1406 (2004)
Uecker, M., Lai, P., Murphy, M.J., Virtue, P., Elad, M., Pauly, J.M., Vasanawala, S.S., Lustig, M.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. MRM 71(3), 990–1001 (2014)
Collingridge, D.S.: A primer on quantitized data analysis and permutation testing. J. Mixed Meth. Res. 7(1), 81–97 (2013)
Kingma D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114v10 (2014)
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. arXiv:1401.4082v3 (2014)
Author information
Authors and Affiliations
Contributions
Equal contribution.
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Gaillochet, M., Tezcan, K.C., Konukoglu, E. (2020). Joint Reconstruction and Bias Field Correction for Undersampled MR Imaging. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-59713-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59712-2
Online ISBN: 978-3-030-59713-9
eBook Packages: Computer ScienceComputer Science (R0)