Abstract
Intra-operative brain shift is a well-known phenomenon that describes non-rigid deformation of brain tissues due to gravity and loss of cerebrospinal fluid among other phenomena. This has a negative influence on surgical outcome that is often based on pre-operative planning where the brain shift is not considered. We present a novel brain-shift aware Augmented Reality method to align pre-operative 3D data onto the deformed brain surface viewed through a surgical microscope. We formulate our non-rigid registration as a Shape-from-Template problem. A pre-operative 3D wire-like deformable model is registered onto a single 2D image of the cortical vessels, which is automatically segmented. This 3D/2D registration drives the underlying brain structures, such as tumors, and compensates for the brain shift in sub-cortical regions. We evaluated our approach on simulated and real data composed of 6 patients. It achieved good quantitative and qualitative results making it suitable for neurosurgical guidance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., Pizarro, D.: Shape-from-template. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2099–2118 (2015)
Bayer, S., Maier, A., Ostermeier, M., Fahrig, R.: Intraoperative imaging modalities and compensation for brain shift in tumor resection surgery. Int. J. Biomed. Imaging 2017, 1–18 (2017)
Bilger, A., Dequidt, J., Duriez, C., Cotin, S.: Biomechanical simulation of electrode migration for deep brain stimulation. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6891, pp. 339–346. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23623-5_43
Cotin, S., Duriez, C., Lenoir, J., Neumann, P., Dawson, S.: New approaches to catheter navigation for interventional radiology simulation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 534–542. Springer, Heidelberg (2005). https://doi.org/10.1007/11566489_66
Ebrahimi, A.: Mechanical properties of normal and diseased cerebrovascular system. J. Vasc. Interv. Radiol. 2(2), 155–162 (2009)
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). p. 2650–2658. ICCV 2015, IEEE Computer Society, USA (2015)
Essert, C., Haegelen, C., Lalys, F., Abadie, A., Jannin, P.: Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int. J. Comput. Assist. Radiol. Surg. 7, 517–532 (2011)
Hamzé, N., Bilger, A., Duriez, C., Cotin, S., Essert, C.: Anticipation of brain shift in deep brain stimulation automatic planning. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 3635–3638 (2015)
Haouchine, N., Juvekar, P., Golby, S., Wells, W., Cotin, S., Frisken, S.: Alignment of cortical vessels viewed through the surgical microscope with preoperative imaging to compensate for brain shift. SPIE Image-Guided Procedures, Robotic Inter. Model. 60(10), 11315–11360 (2020)
Ji, S., Fan, X., Roberts, D.W., Hartov, A., Paulsen, K.D.: Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration. Med. Image Anal. 18(7), 1169–1183 (2014)
Ji, S., Wu, Z., Hartov, A., Roberts, D.W., Paulsen, K.D.: Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery. Med. Phys. 35(10), 4612–4624 (2008)
Jiang, J., et al.: Marker-less tracking of brain surface deformations by non-rigid registration integrating surface and vessel/sulci features. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1687–1701 (2016). https://doi.org/10.1007/s11548-016-1358-7
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014), http://arxiv.org/abs/1412.6980, Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego (2015)
Kuhnt, D., Bauer, M.H.A., Nimsky, C.: Brain shift compensation and neurosurgical image fusion using intraoperative mri: current status and future challenges. Crit. Rev. Biomed. Eng. 40(3), 175–185 (2012)
Luo, M., Frisken, S.F., Narasimhan, S., Clements, L.W., Thompson, R.C., Golby, A.J., Miga, M.I.: A comprehensive model-assisted brain shift correction approach in image-guided neurosurgery: a case study in brain swelling and subsequent sag after craniotomy. In: Fei, B., Linte, C.A. (eds.) Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10951, pp. 15–24. International Society for Optics and Photonics, SPIE (2019)
Marreiros, F.M.M., Rossitti, S., Wang, C., Smedby, Ö.: Non-rigid deformation pipeline for compensation of superficial brain shift. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 141–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_18
Miga, M.I., et al.: Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases. Int. J. Comput. Assist. Radiol. Surg. 11(8), 1467–1474 (2015). https://doi.org/10.1007/s11548-015-1295-x
Mohammadi, A., Ahmadian, A., Azar, A.D., Sheykh, A.D., Amiri, F., Alirezaie, J.: Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study. Int. J. Comput. Assist. Radiol. Surg. 10(11), 1753–1764 (2015). https://doi.org/10.1007/s11548-015-1216-z
Pereira, V.M., et al.: Volumetric measurements of brain shift using intraoperative cone-beam computed tomography: preliminary study. Oper. Neurosurg. 12(1), 4–13 (2015)
Reinertsen, I., Lindseth, F., Askeland, C., Iversen, D.H., Unsgård, G.: Intra-operative correction of brain-shift. Acta Neurochir. (Wien) 156(7), 1301–1310 (2014). https://doi.org/10.1007/s00701-014-2052-6
Rivaz, H., Collins, D.L.: Deformable registration of preoperative mr, pre-resection ultrasound, and post-resection ultrasound images of neurosurgery. Int. J. Comput. Assist. Radiol. Surg. 10(7), 1017–1028 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sun, K., Pheiffer, T., Simpson, A., Weis, J., Thompson, R., Miga, M.: Near real-time computer assisted surgery for brain shift correction using biomechanical models. IEEE J. Transl. Eng. Health Med. 2, 1–13 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Haouchine, N., Juvekar, P., Wells III, W.M., Cotin, S., Golby, A., Frisken, S. (2020). Deformation Aware Augmented Reality for Craniotomy Using 3D/2D Non-rigid Registration of Cortical Vessels. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_71
Download citation
DOI: https://doi.org/10.1007/978-3-030-59719-1_71
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59718-4
Online ISBN: 978-3-030-59719-1
eBook Packages: Computer ScienceComputer Science (R0)