[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Deformation Aware Augmented Reality for Craniotomy Using 3D/2D Non-rigid Registration of Cortical Vessels

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Intra-operative brain shift is a well-known phenomenon that describes non-rigid deformation of brain tissues due to gravity and loss of cerebrospinal fluid among other phenomena. This has a negative influence on surgical outcome that is often based on pre-operative planning where the brain shift is not considered. We present a novel brain-shift aware Augmented Reality method to align pre-operative 3D data onto the deformed brain surface viewed through a surgical microscope. We formulate our non-rigid registration as a Shape-from-Template problem. A pre-operative 3D wire-like deformable model is registered onto a single 2D image of the cortical vessels, which is automatically segmented. This 3D/2D registration drives the underlying brain structures, such as tumors, and compensates for the brain shift in sub-cortical regions. We evaluated our approach on simulated and real data composed of 6 patients. It achieved good quantitative and qualitative results making it suitable for neurosurgical guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., Pizarro, D.: Shape-from-template. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2099–2118 (2015)

    Article  Google Scholar 

  2. Bayer, S., Maier, A., Ostermeier, M., Fahrig, R.: Intraoperative imaging modalities and compensation for brain shift in tumor resection surgery. Int. J. Biomed. Imaging 2017, 1–18 (2017)

    Google Scholar 

  3. Bilger, A., Dequidt, J., Duriez, C., Cotin, S.: Biomechanical simulation of electrode migration for deep brain stimulation. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6891, pp. 339–346. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23623-5_43

    Chapter  Google Scholar 

  4. Cotin, S., Duriez, C., Lenoir, J., Neumann, P., Dawson, S.: New approaches to catheter navigation for interventional radiology simulation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 534–542. Springer, Heidelberg (2005). https://doi.org/10.1007/11566489_66

    Chapter  Google Scholar 

  5. Ebrahimi, A.: Mechanical properties of normal and diseased cerebrovascular system. J. Vasc. Interv. Radiol. 2(2), 155–162 (2009)

    Google Scholar 

  6. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). p. 2650–2658. ICCV 2015, IEEE Computer Society, USA (2015)

    Google Scholar 

  7. Essert, C., Haegelen, C., Lalys, F., Abadie, A., Jannin, P.: Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int. J. Comput. Assist. Radiol. Surg. 7, 517–532 (2011)

    Article  Google Scholar 

  8. Hamzé, N., Bilger, A., Duriez, C., Cotin, S., Essert, C.: Anticipation of brain shift in deep brain stimulation automatic planning. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 3635–3638 (2015)

    Google Scholar 

  9. Haouchine, N., Juvekar, P., Golby, S., Wells, W., Cotin, S., Frisken, S.: Alignment of cortical vessels viewed through the surgical microscope with preoperative imaging to compensate for brain shift. SPIE Image-Guided Procedures, Robotic Inter. Model. 60(10), 11315–11360 (2020)

    Google Scholar 

  10. Ji, S., Fan, X., Roberts, D.W., Hartov, A., Paulsen, K.D.: Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration. Med. Image Anal. 18(7), 1169–1183 (2014)

    Article  Google Scholar 

  11. Ji, S., Wu, Z., Hartov, A., Roberts, D.W., Paulsen, K.D.: Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery. Med. Phys. 35(10), 4612–4624 (2008)

    Article  Google Scholar 

  12. Jiang, J., et al.: Marker-less tracking of brain surface deformations by non-rigid registration integrating surface and vessel/sulci features. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1687–1701 (2016). https://doi.org/10.1007/s11548-016-1358-7

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014), http://arxiv.org/abs/1412.6980, Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego (2015)

  14. Kuhnt, D., Bauer, M.H.A., Nimsky, C.: Brain shift compensation and neurosurgical image fusion using intraoperative mri: current status and future challenges. Crit. Rev. Biomed. Eng. 40(3), 175–185 (2012)

    Article  Google Scholar 

  15. Luo, M., Frisken, S.F., Narasimhan, S., Clements, L.W., Thompson, R.C., Golby, A.J., Miga, M.I.: A comprehensive model-assisted brain shift correction approach in image-guided neurosurgery: a case study in brain swelling and subsequent sag after craniotomy. In: Fei, B., Linte, C.A. (eds.) Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10951, pp. 15–24. International Society for Optics and Photonics, SPIE (2019)

    Google Scholar 

  16. Marreiros, F.M.M., Rossitti, S., Wang, C., Smedby, Ö.: Non-rigid deformation pipeline for compensation of superficial brain shift. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 141–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_18

    Chapter  Google Scholar 

  17. Miga, M.I., et al.: Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases. Int. J. Comput. Assist. Radiol. Surg. 11(8), 1467–1474 (2015). https://doi.org/10.1007/s11548-015-1295-x

    Article  Google Scholar 

  18. Mohammadi, A., Ahmadian, A., Azar, A.D., Sheykh, A.D., Amiri, F., Alirezaie, J.: Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study. Int. J. Comput. Assist. Radiol. Surg. 10(11), 1753–1764 (2015). https://doi.org/10.1007/s11548-015-1216-z

    Article  Google Scholar 

  19. Pereira, V.M., et al.: Volumetric measurements of brain shift using intraoperative cone-beam computed tomography: preliminary study. Oper. Neurosurg. 12(1), 4–13 (2015)

    Article  MathSciNet  Google Scholar 

  20. Reinertsen, I., Lindseth, F., Askeland, C., Iversen, D.H., Unsgård, G.: Intra-operative correction of brain-shift. Acta Neurochir. (Wien) 156(7), 1301–1310 (2014). https://doi.org/10.1007/s00701-014-2052-6

    Article  Google Scholar 

  21. Rivaz, H., Collins, D.L.: Deformable registration of preoperative mr, pre-resection ultrasound, and post-resection ultrasound images of neurosurgery. Int. J. Comput. Assist. Radiol. Surg. 10(7), 1017–1028 (2015)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Sun, K., Pheiffer, T., Simpson, A., Weis, J., Thompson, R., Miga, M.: Near real-time computer assisted surgery for brain shift correction using biomechanical models. IEEE J. Transl. Eng. Health Med. 2, 1–13 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim Haouchine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haouchine, N., Juvekar, P., Wells III, W.M., Cotin, S., Golby, A., Frisken, S. (2020). Deformation Aware Augmented Reality for Craniotomy Using 3D/2D Non-rigid Registration of Cortical Vessels. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics