[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning 3D Features with 2D CNNs via Surface Projection for CT Volume Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

3D features are desired in nature for segmenting CT volumes. It is, however, computationally expensive to employ a 3D convolutional neural network (CNN) to learn 3D features. Existing methods hence learn 3D features by still relying on 2D CNNs while attempting to consider more 2D slices, but up until now it is difficulty for them to consider the whole volumetric data, resulting in information loss and performance degradation. In this paper, we propose a simple and effective technique that allows a 2D CNN to learn 3D features for segmenting CT volumes. Our key insight is that all boundary voxels of a 3D object form a surface that can be represented by using a 2D matrix, and therefore they can be perfectly recognized by a 2D CNN in theory. We hence learn 3D features for recognizing these boundary voxels by learning the projection distance between a set of prescribed spherical surfaces and the object’s surface, which can be readily performed by a 2D CNN. By doing so, we can consider the whole volumetric data when spherical surfaces are sampled sufficiently dense, without any information loss. We assessed the proposed method on a publicly available dataset. The experimental evidence shows that the proposed method is effective, outperforming existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available on https://zenodo.org/record/1169361#.XSFOm-gzYuU.

References

  1. Cerrolaza, J., Picazo, M., Humbert, L., et al.: Computational anatomy for multi-organ analysis in medical imaging: a review. Med. Image Anal. 56, 44–67 (2019)

    Article  Google Scholar 

  2. Roth, H., Shen, Ch., Oda, H., et al.: Deep learning and its application to medical image segmentation. Med. Imaging Technol. 36(2), 63–71 (2018)

    Google Scholar 

  3. Roth, H.R., et al.: A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 417–425. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_48

    Chapter  Google Scholar 

  4. Kakeya, H., Okada, T., Oshiro, Y.: 3D U-JAPA-Net: mixture of convolutional networks for abdominal multi-organ CT segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 426–433. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_49

    Chapter  Google Scholar 

  5. Chen, J., Yang, L., Zhang, Y., et al.: Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: Advances in Neural Information Processing Systems, pp. 3036–3044 (2016)

    Google Scholar 

  6. Christ, P., et al.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_48

    Chapter  Google Scholar 

  7. Cai, J., Lu, L., Xie, Y., et al.: Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function. arXiv preprint arXiv:1707.04912 (2017)

  8. Novikov, A., Major, D., Wimmer, M., et al.: Deep sequential segmentation of organs in volumetric medical scans. IEEE Trans. Med. Imaging 38(5), 1207–1215 (2018)

    Article  Google Scholar 

  9. Li, X., Chen, H., Qi, X., et al.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  10. Xia, Y., Xie, L., Liu, F., Zhu, Z., Fishman, E.K., Yuille, A.L.: Bridging the gap between 2D and 3D organ segmentation with volumetric fusion net. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 445–453. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_51

    Chapter  Google Scholar 

  11. Yu, Q., Xia, Y., Xie, L., et al.: Thickened 2D networks for 3D medical image segmentation. arXiv preprint arXiv:1904.01150 (2019)

  12. Ambellan, F., Tack, A., Ehlke, M., et al.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019)

    Article  Google Scholar 

  13. Wang, Y., Zhou, Y., Shen, W., et al.: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 55, 88–102 (2019)

    Article  Google Scholar 

  14. Wang, Z., Wang, G.: Triplanar convolutional neural network for automatic liver and tumor image segmentation. International Journal of Performability Engineering 14(12), 3151–3158 (2019)

    Google Scholar 

  15. Li, Y., et al.: Volumetric medical image segmentation: a 3D deep coarse-to-fine framework and its adversarial examples. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds.) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. ACVPR, pp. 69–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13969-8_4

    Chapter  Google Scholar 

  16. Quattoni, A., Collins, M. and Darrell, T.: Conditional random fields for object recognition. In. Advances in Neural Information Processing Systems, pp. 1097–1104 (2005)

    Google Scholar 

  17. Zheng, S., Jayasumana, S., Romera-Paredes B., et al.: Conditional random fields as recurrent neural networks. In. IEEE International Conference on Computer Vision, pp. 1529–1537 (2015)

    Google Scholar 

  18. Tianwei, N., Lingxi, X., Huangjie, Zh, et al.: Elastic boundary projection for 3D medical image segmentation. In: IEEE International Conference on Computer Vision, pp. 2109–2118 (2019)

    Google Scholar 

  19. Lipton, Z., Berkowitz, J. and Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

  20. Mandic, D. and Chambers, J.: Recurrent neural networks for prediction: learning algorithms, architectures and stability. (2001)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Zhang, C., Bengio, S., Hardt, M., et al.: Understanding deep learning requires rethinking generalization. In: International Conference on Learning Representations, pp. 1–15 (2017)

    Google Scholar 

  23. Arpit, D., Jastrzebski, S., Ballas, N., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242 (2017)

    Google Scholar 

  24. Ma, X., Wang, Y., Houle, M., et al.: Dimensionality-driven learning with noisy labels. In: International Conference on Machine Learning, pp. 3361–3370 (2018)

    Google Scholar 

  25. Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  26. Soler, L., Hostettler, A., Agnus, V., et al.: 3D image reconstruction for comparison of algorithm database: a patient specific anatomical and medical image database. Technical report IRCAD, Strasbourg, France (2010)

    Google Scholar 

  27. Gibson, E., Giganti, F., Hu, Y., et al.: Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans. Med. Imaging 37(8), 1822–1834 (2018)

    Article  Google Scholar 

  28. Clark, K., Vendt, B., Smith, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  29. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  30. Roth, H., Farag, A., Turkbey, E., et al.: Data from pancreas-CT. The cancer imaging archive. (2015)

    Google Scholar 

  31. Landman, B., Xu, Z., Eugenio, I., et al.: MICCAI multi-atlas labeling beyond the cranial vault-workshop and challenge (2015)

    Google Scholar 

  32. Xu, Z., Lee, C., Heinrich, M., et al.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)

    Article  Google Scholar 

  33. Isensee, F., Petersen, J., Klein, A., et al.: NNU-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  34. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  35. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

Download references

Acknowledgement

The work described in this paper is supported by a grant from the Hong Kong Research Grants Council (Project No. PolyU 152035/17E), a grant from the Natural Foundation of China (Grant No. 61902232), a grant from the Li Ka Shing Foundation Cross-Disciplinary Research (Grant no. 2020LKSFG05D), a grant from the Innovative Technology Fund (Grant No. MRP/015/18), and a grant from the General Research Fund (Grant No. PolyU 152006/19E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youyi Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Y. et al. (2020). Learning 3D Features with 2D CNNs via Surface Projection for CT Volume Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics