Abstract
Parkinson’s disease (PD) is a progressive neurological disorder primarily affecting motor function resulting in tremor at rest, rigidity, bradykinesia, and postural instability. The physical severity of PD impairments can be quantified through the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), a widely used clinical rating scale. Accurate and quantitative assessment of disease progression is critical to developing a treatment that slows or stops further advancement of the disease. Prior work has mainly focused on dopamine transport neuroimaging for diagnosis or costly and intrusive wearables evaluating motor impairments. For the first time, we propose a computer vision-based model that observes non-intrusive video recordings of individuals, extracts their 3D body skeletons, tracks them through time, and classifies the movements according to the MDS-UPDRS gait scores. Experimental results show that our proposed method performs significantly better than chance and competing methods with an \(F_1\)-score of 0.83 and a balanced accuracy of 81%. This is the first benchmark for classifying PD patients based on MDS-UPDRS gait severity and could be an objective biomarker for disease severity. Our work demonstrates how computer-assisted technologies can be used to non-intrusively monitor patients and their motor impairments. The code is available at https://github.com/mlu355/PD-Motor-Severity-Estimation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adeli, E., et al.: Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. NeuroImage 141, 206–219 (2016)
Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 3686–3693 (2014)
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP, pp. 3464–3468. IEEE (2016)
Bharti, K., et al.: Neuroimaging advances in Parkinson’s disease with freezing of gait: a systematic review. NeuroImage: Clin. 24, 102059 (2019)
Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: CVPR (2017)
Chiu, H.k., Adeli, E., Wang, B., Huang, D.A., Niebles, J.C.: Action-agnostic human pose forecasting. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1423–1432. IEEE (2019)
Cho, C.W., Chao, W.H., Lin, S.H., Chen, Y.Y.: A vision-based analysis system for gait recognition in patients with Parkinson’s disease. Expert Syst. Appl. 36(3), 7033–7039 (2009)
Evers, L.J., Krijthe, J.H., Meinders, M.J., Bloem, B.R., Heskes, T.M.: Measuring Parkinson’s disease over time: the real-world within-subject reliability of the MDS-UPDRS. Mov. Disord. 34(10), 1480–1487 (2019)
Goetz, C.G., et al.: Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord.: Off. J. Mov. Disord. Soc. 23(15), 2129–2170 (2008)
Han, J., Jeon, H.S., Jeon, B.S., Park, K.S.: Gait detection from three dimensional acceleration signals of ankles for the patients with Parkinson’s disease. In: Proceedings of the IEEE The International Special Topic Conference on Information Technology in Biomedicine, vol. 2628, Ioannina (2006)
Hobert, M.A., Nussbaum, S., Heger, T., Berg, D., Maetzler, W., Heinzel, S.: Progressive gait deficits in Parkinson’s disease: a wearable-based biannual 5-year prospective study. Front. Aging Neurosci. 11, 22 (2019)
Hssayeni, M.D., Jimenez-Shahed, J., Burack, M.A., Ghoraani, B.: Wearable sensors for estimation of parkinsonian tremor severity during free body movements. Sensors 19(19), 4215 (2019)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)
Kalman, R.E.: A new approach to linear filtering and prediction problems (1960)
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR, pp. 7122–7131 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: ICCV (2019)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: CVPR, pp. 2980–2988 (2017)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 1–16 (2015)
Mehta, D., et al.: VNect: real-time 3D human pose estimation with a single RGB camera, vol. 36 (2017). http://gvv.mpi-inf.mpg.de/projects/VNect/
Pang, L., Lan, Y., Guo, J., Xu, J., Xu, J., Cheng, X.: DeepRank: a new deep architecture for relevance ranking in information retrieval. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 257–266 (2017)
Poston, K.L., et al.: Compensatory neural mechanisms in cognitively unimpaired Parkinson disease. Ann. Neurol. 79(3), 448–463 (2016)
Redmon, J.: DarkNet: open source neural networks in c (2013–2016). http://pjreddie.com/darknet/
Rennie, J.D., Srebro, N.: Loss functions for preference levels: regression with discrete ordered labels. In: IJCAI Workshop Advances in Preference Handling (2005)
Venuto, C.S., Potter, N.B., Ray Dorsey, E., Kieburtz, K.: A review of disease progression models of Parkinson’s disease and applications in clinical trials. Mov. Disord. 31(7), 947–956 (2016)
Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. PAMI 25(12), 1505–1518 (2003)
Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, Springer Series in Statistics (Perspectives in Statistics), pp. 196–202. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_16
Xue, D., et al.: Vision-based gait analysis for senior care. arXiv preprint arXiv:1812.00169 (2018)
Yang, F., Wu, Y., Sakti, S., Nakamura, S.: Make skeleton-based action recognition model smaller, faster and better. In: ACM Multimedia Asia, pp. 1–6 (2019)
Acknowledgment
This research was supported in part by NIH grants AA010723, AA017347, AG047366, and P30AG066515. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This study was also supported by the Stanford School of Medicine Department of Psychiatry & Behavioral Sciences 2021 Innovator Grant Program and the Stanford Institute for Human-centered Artificial Intelligence (HAI) AWS Cloud Credit.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lu, M. et al. (2020). Vision-Based Estimation of MDS-UPDRS Gait Scores for Assessing Parkinson’s Disease Motor Severity. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_61
Download citation
DOI: https://doi.org/10.1007/978-3-030-59716-0_61
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59715-3
Online ISBN: 978-3-030-59716-0
eBook Packages: Computer ScienceComputer Science (R0)