[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Tensor Distances for Self Organizing Maps: Clustering Cognitive Tasks

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2020)

Abstract

Self organizing maps (SOMs) are neural networks designed to be in an unsupervised way to create connections, learned through a modified Hebbian rule, between a high- (the input vector space) and a low-dimensional space (the cognitive map) based solely on distances in the input vector space. Moreover, the cognitive map is segmentwise continuous and preserves many of the major topological features of the latter. Therefore, neurons, trained using a Hebbian learning rule, can approximate the shape of any arbitrary manifold provided there are enough neurons to accomplish this. Moreover, the cognitive map can be readily used for clustering and visualization. Because of the above properties, SOMs are often used in big data pipelines. This conference paper focuses on a multilinear distance metric for the input vector space which adds flexibility in two ways. First, clustering can be extended to higher order data such as images, graphs, matrices, and time series. Second, the resulting clusters are unions of arbitrary shapes instead of fixed ones such as rectangles in case of \(\ell _1\) norm or circles in case of \(\ell _2\) norm. As a concrete example, the proposed distance metric is applied to an anonymized and open under the Creative Commons license cognitive multimodal dataset of fMRI images taken during three distinct cognitive tasks. Keeping the latter as ground truth, a subset of these images is clustered with SOMs of various configurations. The results are evaluated using the corresponding confusion matrices, topological error rates, activation set change rates, and intra-cluster distance variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Dataset https://doi.org/10.18112/openneuro.ds002366.v1.0.0.

References

  1. Cichocki, A., et al.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015)

    Article  Google Scholar 

  2. Deboeck, G., Kohonen, T.: Visual Explorations in Finance with Self-Organizing Maps. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-3913-3

    Book  MATH  Google Scholar 

  3. Downs, R.M., Stea, D.: Cognitive maps and spatial behavior: process and products. Adaline (1973)

    Google Scholar 

  4. Drakopoulos, G., Kanavos, A., Karydis, I., Sioutas, S., Vrahatis, A.G.: Tensor-based semantically-aware topic clustering of biomedical documents. Computation 5(3), 34 (2017). https://doi.org/10.3390/computation5030034

    Article  Google Scholar 

  5. Drakopoulos, G., Mylonas, P., Sioutas, S.: A case of adaptive nonlinear system identification with third order tensors in TensorFlow. In: INISTA, pp. 1–6 (2019). https://doi.org/10.1109/INISTA.2019.8778406

  6. Drakopoulos, G., et al.: A genetic algorithm for spatiosocial tensor clustering. EVOS 1(11) (2019). https://doi.org/10.1007/s12530-019-09274-9

  7. Hewitson, B., Crane, R.G.: Self-organizing maps: applications to synoptic climatology. Clim. Res. 22(1), 13–26 (2002)

    Article  Google Scholar 

  8. Kangas, J.A., Kohonen, T.K., Laaksonen, J.T.: Variants of self-organizing maps. IEEE Trans. Neural Netw. 1(1), 93–99 (1990)

    Article  Google Scholar 

  9. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM-self-organizing maps of document collections. Neurocomputing 21(1–3), 101–117 (1998)

    Article  Google Scholar 

  10. Kiviluoto, K.: Topology preservation in self-organizing maps. In: ICNN, vol. 1, pp. 294–299. IEEE (1996)

    Google Scholar 

  11. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  12. Kohonen, T.: Exploration of very large databases by self-organizing maps. In: ICNN. vol. 1, pp. PL1-PL6. IEEE (1997)

    Google Scholar 

  13. Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing 21(1–3), 19–30 (1998)

    Article  Google Scholar 

  14. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sornmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47(7), 838–848 (2000)

    Article  Google Scholar 

  15. Lampinen, J., Oja, E.: Clustering properties of hierarchical self-organizing maps. J. Math. Imaging Vis. 2(2–3), 261–272 (1992)

    Article  Google Scholar 

  16. Li, Q., Schonfeld, D.: Multilinear discriminant analysis for higher-order tensor data classification. TPAMI 36(12), 2524–2537 (2014)

    Article  Google Scholar 

  17. Liu, Y., Liu, Y., Zhong, S., Chan, K.C.: Tensor distance based multilinear globality preserving embedding: a unified tensor based dimensionality reduction framework for image and video classification. Expert Syst. Appl. 39(12), 10500–10511 (2012)

    Article  Google Scholar 

  18. Lloyd, W., Morriss, J., Macdonald, B., Joanknecht, K., Sigurd, J., van Reekum, C.: Longitudinal change in executive function is associated with impaired top-down frontolimbic regulation during reappraisal in older adults. bioRxiv (2019)

    Google Scholar 

  19. Lu, H., Plataniotis, K., Venetsanopoulos, A.: Uncorrelated multilinear discriminant analysis with regularization for gait recognition. In: Biometrics Symposium, pp. 1–6. IEEE (2007)

    Google Scholar 

  20. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition. IEEE Trans. Neural Netw. 20(1), 103–123 (2008)

    Google Scholar 

  21. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Clarendon Press, Oxford (1978)

    Google Scholar 

  22. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: ICML, pp. 792–799. ACM (2005)

    Google Scholar 

  23. Sul, S.J., Tovchigrechko, A.: Parallelizing BLAST and SOM algorithms with MapReduce-MPI library. In: International Symposium on Parallel and Distributed Processing, pp. 481–489. IEEE (2011)

    Google Scholar 

  24. Tisan, A., Cirstea, M.: SOM neural network design- a new Simulink library based approach targeting FPGA implementation. Math. Comput. Simul. 91, 134–149 (2013)

    Article  MathSciNet  Google Scholar 

  25. Törönen, P., Kolehmainen, M., Wong, G., Castrén, E.: Analysis of gene expression data using self-organizing maps. FEBS Lett. 451(2), 142–146 (1999)

    Article  Google Scholar 

  26. Tversky, B.: Cognitive maps, cognitive collages, and spatial mental models. In: Frank, A.U., Campari, I. (eds.) COSIT 1993. LNCS, vol. 716, pp. 14–24. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57207-4_2

    Chapter  Google Scholar 

  27. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: TensorFaces. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 447–460. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47969-4_30

    Chapter  Google Scholar 

  28. Yan, S., Xu, D., Yang, Q., Zhang, L., Tang, X., Zhang, H.J.: Multilinear discriminant analysis for face recognition. IEEE Trans. Image Process. 16(1), 212–220 (2006)

    Article  MathSciNet  Google Scholar 

  29. Yu, D., Deng, L., Seide, F.: The deep tensor neural network with applications to large vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 21(2), 388–396 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

This conference paper is part of the Interreg V-A Greece-Italy Programme 2014-2020 project “Fostering capacities and networking of industrial liaison offices, exploitation of research results, and business support” (ILONET), co-funded by the European Union, European Regional Development Funds (ERDF), and by the national funds of Greece and Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Drakopoulos .

Editor information

Editors and Affiliations

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Drakopoulos, G., Giannoukou, I., Mylonas, P., Sioutas, S. (2020). On Tensor Distances for Self Organizing Maps: Clustering Cognitive Tasks. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2020. Lecture Notes in Computer Science(), vol 12392. Springer, Cham. https://doi.org/10.1007/978-3-030-59051-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59051-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59050-5

  • Online ISBN: 978-3-030-59051-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics