Abstract
We give an overview of the theory and practice of second-order rewriting. Second-order rewriting methods have been demonstrated as useful that is applicable to important notions of programming languages such as logic programming, algebraic effects, quantum computation, and cyclic computation. We explain foundation and evolution of second-order rewriting by presenting the framework of second-order computation systems. We also demonstrate our system SOL of second-order laboratory through various programming language examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aczel, P.: A general Church-Rosser theorem. Technical report, University of Manchester (1978)
Arkor, N., Fiore, M.: Algebraic models of simple type theories: a polynomial approach. In: Proceedings of LICS 2020, pp. 88–101. ACM (2020)
Blanqui, F.: Termination and confluence of higher-order rewrite systems. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 47–61. Springer, Heidelberg (2000). https://doi.org/10.1007/10721975_4
Blanqui, F.: Termination of rewrite relations on \(\lambda \)-terms based on Girard’s notion of reducibility. Theor. Comput. Sci. 611, 50–86 (2016)
Fiore, M., Hur, C.-K.: Second-order equational logic (extended abstract). In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 320–335. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4_26
Fiore, M., Hamana, M.: Multiversal polymorphic algebraic theories: syntax, semantics, translations, and equational logic. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, pp. 520–529 (2013)
Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda calculus. In: Proceedings of PPDP 2002, pp. 26–37. ACM Press (2002)
Fiore, M.: Second-order and dependently-sorted abstract syntax. In: Proceedings of LICS 2008, pp. 57–68 (2008)
Fiore, M., Mahmoud, O.: Second-order algebraic theories. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 368–380. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_33
Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proceedings of LICS 1999, pp. 193–202 (1999)
Fiore, M., Staton, S.: Substitution, jumps, and algebraic effects. In: Proceedings of the CSL-LICS 2014, pp. 41:1–41:10 (2014)
Hamana, M., Abe, T., Kikuchi, K.: Polymorphic computation systems: theory and practice of confluence with call-by-value. Sci. Comput. Program. 187(102322) (2020)
Hamana, M.: Free \(\Sigma \)-monoids: a higher-order syntax with metavariables. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 348–363. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30477-7_23
Hamana, M.: Universal algebra for termination of higher-order rewriting. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 135–149. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_11
Hamana, M.: Higher-order semantic labelling for inductive datatype systems. In: Proceedings of PPDP 2007, pp. 97–108. ACM Press (2007)
Hamana, M.: Initial algebra semantics for cyclic sharing tree structures. Log. Methods Comput. Sci. 6(3(15)), 1–1–23 (2010)
Hamana, M.: Semantic labelling for proving termination of combinatory reduction systems. In: Escobar, S. (ed.) WFLP 2009. LNCS, vol. 5979, pp. 62–78. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11999-6_5
Hamana, M.: Polymorphic abstract syntax via Grothendieck construction. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 381–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19805-2_26
Hamana, M.: Cyclic datatypes modulo bisimulation based on second-order algebraic theories. Log. Methods Comput. Sci. 13, 1–38 (2017)
Hamana, M.: How to prove your calculus is decidable: practical applications of second-order algebraic theories and computation. Proc. ACM Program. Lang. 1(22), 1–28 (2017)
Hamana, M.: Polymorphic rewrite rules: confluence, type inference, and instance validation. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS 2018. LNCS, vol. 10818, pp. 99–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90686-7_7
Hamana, M.: How to prove decidability of equational theories with second-order computation analyser SOL. J. Funct. Program. 29(e20) (2019)
Hamana, M.: Modular termination for second-order computation rules and application to algebraic effect handlers. arXiv:1912.03434 (2020)
Klop, J.W.: Combinatory reduction systems. Ph.D. thesis, CWI. Mathematical Centre Tracts, vol. 127, Amsterdam (1980)
Staton, S.: An algebraic presentation of predicate logic. In: Proceedings of FOSSACS 201, pp. 401–417 (2013)
Staton, S.: Instances of computational effects: an algebraic perspective. In: Proceedings of LICS 2013, p. 519 (2013)
Staton, S.: Algebraic effects, linearity, and quantum programming languages. In: Proceedings of POPL 2015, pp. 395–406 (2015)
Yokoyama, T., Hu, Z., Takeichi, M.: Deterministic second-order patterns. Inf. Process. Lett. 89(6), 309–314 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hamana, M. (2020). Theory and Practice of Second-Order Rewriting: Foundation, Evolution, and SOL. In: Nakano, K., Sagonas, K. (eds) Functional and Logic Programming. FLOPS 2020. Lecture Notes in Computer Science(), vol 12073. Springer, Cham. https://doi.org/10.1007/978-3-030-59025-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-59025-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59024-6
Online ISBN: 978-3-030-59025-3
eBook Packages: Computer ScienceComputer Science (R0)