[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

VisArch: Visualisation of Performance-based Architectural Refactorings

  • Conference paper
  • First Online:
Software Architecture (ECSA 2020)

Abstract

Evaluating the performance characteristics of software architectures is not trivial since many factors, such as workload fluctuations and service failures, contribute to large variations. To reduce the impact of these factors, architectures are refactored so that their design becomes more robust and less prone to performance violations. This paper proposes an approach for visualizing the impact, from a performance perspective, of different performance-based architectural refactorings that are inherited by the specification of performance antipatterns. A case study including 64 performance-based architectural refactorings is adopted to illustrate how the visual representation supports software architects in the evaluation of different architecture design alternatives.

This work has been partially supported by the MIUR PRIN project SEDUCE 2017TWRCNB and the Baden-Württemberg Stiftung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://lineup.js.org.

References

  1. Aleti, A., et al.: Software architecture optimization methods: a systematic literature review. IEEE Trans. Softw. Eng. 39(5), 658–683 (2013)

    Article  Google Scholar 

  2. Aleti, A., et al.: An efficient method for uncertainty propagation in robust software performance estimation. J. Syst. Softw. 138, 222–235 (2018)

    Article  Google Scholar 

  3. Beck, F., et al.: Visualizing systems and software performance - report on the GI-Dagstuhl seminar (2018). https://peerj.com/preprints/27253/

  4. Berrevoets, R., Weyns, D.: A QoS-aware adaptive mobility handling approach for LoRa-based IoT systems. In: SASO, pp. 130–139 (2018)

    Google Scholar 

  5. Busch, A., Fuchß, D., Eckert, M., Koziolek, A.: Assessing the quality impact of features in component-based software architectures. In: Bures, T., Duchien, L., Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 211–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29983-5_14

    Chapter  Google Scholar 

  6. Calinescu, R., et al.: Designing robust software systems through parametric Markov chain synthesis. In: ICSA, pp. 131–140 (2017)

    Google Scholar 

  7. Cámara, J., Garlan, D., Schmerl, B.: Synthesis and quantitative verification of tradeoff spaces for families of software systems. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS, vol. 10475, pp. 3–21. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65831-5_1

    Chapter  Google Scholar 

  8. Das, O., Woodside, C.M.: Analyzing the effectiveness of fault-management architectures in layered distributed systems. Perform. Eval. 56(1–4), 93–120 (2004)

    Article  Google Scholar 

  9. Esfahani, N., et al.: GuideArch: guiding the exploration of architectural solution space under uncertainty. In: ICSE, pp. 43–52 (2013)

    Google Scholar 

  10. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional, Boston (2018)

    MATH  Google Scholar 

  11. Franks, G., et al.: Enhanced modeling and solution of layered queueing networks. IEEE Trans. Softw. Eng. 35(2), 148–161 (2009)

    Article  Google Scholar 

  12. Furmanova, K., et al.: Taggle: combining overview and details in tabular data visualizations. Inf. Vis. 19(2), 114–136 (2020)

    Article  Google Scholar 

  13. Goodwin, S., et al.: What do constraint programming users want to see? Exploring the role of visualisation in profiling of models and search. IEEE Trans. Vis. Comput. Graph. 23(1), 281–290 (2017)

    Article  Google Scholar 

  14. Incerto, E., et al.: Software performance self-adaptation through efficient model predictive control. In: ASE, pp. 485–496 (2017)

    Google Scholar 

  15. Isaacs, K.E., et al.: State of the art of performance visualization. In: EuroVis - STARs. The Eurographics Association (2014)

    Google Scholar 

  16. Jamshidi, P., et al.: Transfer learning for performance modeling of configurable systems: an exploratory analysis. In: ASE, pp. 497–508 (2017)

    Google Scholar 

  17. Jamshidi, P., Casale, G.: An uncertainty-aware approach to optimal configuration of stream processing systems. In: MASCOTS, pp. 39–48 (2016)

    Google Scholar 

  18. Mahdavi-Hezavehi, S., et al.: A systematic literature review on methods that handle multiple quality attributes in architecture-based self-adaptive systems. Inf. Softw. Technol. 90, 1–26 (2017)

    Article  Google Scholar 

  19. Okanovic, D., et al.: Concern-driven reporting of software performance analysis results. In: ICPE, pp. 1–4. ACM (2019)

    Google Scholar 

  20. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Symposium on Visual Languages, pp. 336–343 (1996)

    Google Scholar 

  21. Smith, C.U.: Software performance antipatterns in cyber-physical systems. In: ICPE, pp. 173–180 (2020)

    Google Scholar 

  22. Smith, C.U., Williams, L.G.: Software performance antipatterns for identifying and correcting performance problems. In: CMG, pp. 717–725 (2012)

    Google Scholar 

  23. Trubiani, C., et al.: Artifacts. https://doi.org/10.5281/zenodo.3936656

  24. Trubiani, C., et al.: Exploring synergies between bottleneck analysis and performance antipatterns. In: ICPE, pp. 75–86 (2014)

    Google Scholar 

  25. Tufte, E.: Envisioning Information. Graphics Press, Cheshire (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catia Trubiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trubiani, C., Aleti, A., Goodwin, S., Jamshidi, P., van Hoorn, A., Gratzl, S. (2020). VisArch: Visualisation of Performance-based Architectural Refactorings. In: Jansen, A., Malavolta, I., Muccini, H., Ozkaya, I., Zimmermann, O. (eds) Software Architecture. ECSA 2020. Lecture Notes in Computer Science(), vol 12292. Springer, Cham. https://doi.org/10.1007/978-3-030-58923-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58923-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58922-6

  • Online ISBN: 978-3-030-58923-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics