Abstract
The increasing complexity of modern automation systems leads to inevitable faults. At the same time, structural variability and untrivial interaction of the sophisticated components makes it harder and harder to apply traditional fault detection methods. Consequently, the popularity of Deep Learning (DL) fault detection methods grows. Model-based system design tools such as Simulink allow the development of executable system models. Besides the design flexibility, these models can provide the training data for DL-based error detectors.
This paper describes the application of an LSTM-based error detector for a system of two industrial robotic manipulators. A detailed Simulink model provides the training data for an LSTM predictor. Error detection is achieved via intelligent processing of the residual between the original signal and the LSTM prediction using two methods. The first method is based on the non-parametric dynamic thresholding. The second method exploits the Gaussian distribution of the residual. The paper presents the results of extensive model-based fault injection experiments that allow the comparison of these methods and the evaluation of the error detection performance for varying error magnitude.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.04.070
Buda, T.S., Caglayan, B., Assem, H.: DeepAD: a generic framework based on deep learning for time series anomaly detection. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10937, pp. 577–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93034-3_46
Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey (2019)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7. IEEE (2015)
Clark, J., Liu, Z., Japkowicz, N.: Adaptive threshold for outlier detection on data streams. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 41–49. IEEE (2018)
Ding, K., Ding, S., Morozov, A., Fabarisov, T., Janschek, K.: On-line error detection and mitigation for time-series data of cyber-physical systems using deep learning based methods. In: 2019 15th European Dependable Computing Conference (EDCC), pp. 7–14. IEEE (2019)
Ergen, T., Mirza, A.H., Kozat, S.S.: Unsupervised and semi-supervised anomaly detection with LSTM neural networks. arXiv preprint arXiv:1710.09207 (2017)
Fabarisov, T.: Fault injection block (2020). https://github.com/Flatag/FIBlock/
MATLAB and Simulink files for modeling and simulation of ROBOTIS OpenManipulator. https://github.com/mathworks-robotics/designing-robot-manipulator-algorithms. Accessed 20 May 2020
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018)
Lindemann, B., Jazdi, N., Weyrich, M.: Anomaly detection for quality control based on sequence-to-sequence LSTM networks. AT-Automatisierungstechnik 67(12), 1058–1068 (2019)
Lindemann, B., Fesenmayr, F., Jazdi, N., Weyrich, M.: Anomaly detection in discrete manufacturing using self-learning approaches. Proc. CIRP 79, 313–318 (2019)
Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148 (2016)
Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: Proceedings, p. 89. Presses universitaires de Louvain (2015)
Designing Robot Manipulator Algorithms. https://ww2.mathworks.cn/matlabcentral/fileexchange/65316-designing-robot-manipulator-algorithms. Accessed 20 May 2020
Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018)
Park, D., Kim, S., An, Y., Jung, J.Y.: LiReD: a light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks. Sensors 18, 2110 (2018). https://doi.org/10.3390/s18072110
Schervish, M.: P values: What they are and what they are not. Am. Stat. 50, 203–206 (1996). https://doi.org/10.1080/00031305.1996.10474380
Shipmon, D.T., Gurevitch, J.M., Piselli, P.M., Edwards, S.T.: Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data. arXiv preprint arXiv:1708.03665 (2017)
Singh, A.: Anomaly detection for temporal data using long short-term memory (LSTM) (2017)
Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 203–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30143-1_11
Zhu, L., Laptev, N.: Deep and confident prediction for time series at Uber. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 103–110. IEEE (2017)
Zohrevand, Z., Glässer, U.: Should i raise the red flag? A comprehensive survey of anomaly scoring methods toward mitigating false alarms. arXiv preprint arXiv:1904.06646 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ding, S., Morozov, A., Vock, S., Weyrich, M., Janschek, K. (2020). Model-Based Error Detection for Industrial Automation Systems Using LSTM Networks. In: Zeller, M., Höfig, K. (eds) Model-Based Safety and Assessment. IMBSA 2020. Lecture Notes in Computer Science(), vol 12297. Springer, Cham. https://doi.org/10.1007/978-3-030-58920-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-58920-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58919-6
Online ISBN: 978-3-030-58920-2
eBook Packages: Computer ScienceComputer Science (R0)