[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Formal Verification of COLREG-Based Navigation of Maritime Autonomous Systems

  • Conference paper
  • First Online:
Software Engineering and Formal Methods (SEFM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12310))

Included in the following conference series:

Abstract

Along with the very actively progressing field of autonomous ground and aerial vehicles, the advent of autonomous vessels has brought up new research and technological problems originating from the specifics of marine navigation. Autonomous ships are expected to navigate safely and avoid collisions following COLREG navigation rules. Trustworthy navigation of autonomous ships presumes applying provably correct navigation algorithms and control strategies. We introduce the notion of maritime game as a special case of Stochastic Priced Timed Game and model the autonomous navigation using UPPAAL STRATEGO. Furthermore, we use the refinement technique to develop a game model in a correct-by-construction manner. The navigation strategy is verified and optimized to achieve the goal to safely reach the manoeuvre target points at a minimum cost. The approach is illustrated with a case study inspired by COLREG Rule 15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The game model is found in: https://github.com/fshokri/Game-model.

References

  1. Ahmed, Y.A., Hasegawa, K.: Fuzzy reasoned waypoint controller for automatic ship guidance. IFAC-PapersOnLine 49(23), 604–609 (2016)

    Article  Google Scholar 

  2. Ahvenjärvi, S.: The human element and autonomous ships. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 10 (2016)

    Google Scholar 

  3. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Graduate Texts in Computer Science. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4612-1674-2

    Book  MATH  Google Scholar 

  4. Basile, D., Fantechi, A., Rucher, L., Mandò, G.: Statistical model checking of hazards in an autonomous tramway positioning system. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 41–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_3

    Chapter  Google Scholar 

  5. Basile, D., ter Beek, M.H., Legay, A.: Strategy synthesis for autonomous driving in a moving block railway system with Uppaal Stratego. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 3–21. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3_1

    Chapter  Google Scholar 

  6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_7

    Chapter  Google Scholar 

  7. Benjamin, M.R., Curcio, J.A., Leonard, J.J., Newman, P.M.: Navigation of unmanned marine vehicles in accordance with the rules of the road. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 3581–3587. IEEE (2006)

    Google Scholar 

  8. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G., Taankvist, J.H.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_10

    Chapter  Google Scholar 

  9. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_16

    Chapter  Google Scholar 

  10. Höyhtyä, M., Huusko, J., Kiviranta, M., Solberg, K., Rokka, J.: Connectivity for autonomous ships: architecture, use cases, and research challenges. In: 2017 International Conference on Information and Communication Technology Convergence (ICTC), pp. 345–350. IEEE (2017)

    Google Scholar 

  11. IMO: Convention on the international regulations for preventing collisions at sea (COLREGs) (1972)

    Google Scholar 

  12. Jenie, Y.I., van Kampen, E.-J., Remes, B.: Cooperative autonomous collision avoidance system for unmanned aerial vehicle. In: Chu, Q., Mulder, B., Choukroun, D., van Kampen, E.J., de Visser, C., Looye, G. (eds.) Advances in Aerospace Guidance. Navigation and Control, pp. 387–405. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38253-6_24

    Chapter  Google Scholar 

  13. Karra, S.L., Larsen, K.G., Lorber, F., Srba, J.: Safe and time-optimal control for railway games. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 106–122. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_7

    Chapter  Google Scholar 

  14. Katz, S.: A superimposition control construct for distributed systems. ACM Trans. Program. Lang. Syst. (TOPLAS) 15(2), 337–356 (1993)

    Article  Google Scholar 

  15. Kutila, M., Pyykönen, P., Holzhüter, H., Colomb, M., Duthon, P.: Automotive LIDAR performance verification in fog and rain. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1695–1701. IEEE (2018)

    Google Scholar 

  16. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_17

    Chapter  Google Scholar 

  17. Lee, S.-M., Kwon, K.-Y., Joh, J.: A fuzzy logic for autonomous navigation of marine vehicles satisfying COLREG guidelines. Int. J. Control Autom. Syst. 2(2), 171–181 (2004)

    Google Scholar 

  18. Mühlegg, M., Dauer, J.C., Dittrich, J., Holzapfel, F.: Adaptive trajectory controller for generic fixed-wing unmanned aircraft. In: Chu, Q., Mulder, B., Choukroun, D., van Kampen, E.J., de Visser, C., Looye, G. (eds.) Advances in Aerospace Guidance, Navigation and Control, pp. 443–461. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38253-6_27

    Chapter  Google Scholar 

  19. Perera, L.P., Carvalho, J.P., Soares, C.G.: Autonomous guidance and navigation based on the COLREGs rules and regulations of collision avoidance. In: Proceedings of the International Workshop Advanced Ship Design for Pollution Prevention, pp. 205–216 (2009)

    Google Scholar 

  20. Snook, C., Waldén, M.: Refinement of statemachines using Event B semantics. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 171–185. Springer, Heidelberg (2006). https://doi.org/10.1007/11955757_15

    Chapter  Google Scholar 

  21. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2011)

    MATH  Google Scholar 

  22. Teo, K., Ong, K.W., Lai, H.C.: Obstacle detection, avoidance and anti collision for MEREDITH AUV. In: OCEANS 2009, pp. 1–10. IEEE (2009)

    Google Scholar 

  23. Varas, J.M., et al.: MAXCMAS project: autonomous COLREGs compliant ship navigation. In: Proceedings of the 16th Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT), pp. 454–464 (2017)

    Google Scholar 

  24. Wuchen, S., Renxiang, B., Yong, L., Xinyu, L., Liangqi, L., Pengfei, F.: Prediction of leeway and drift angle based on empirical formula. In: Proceedings of the Asia-Pacific Conference on Intelligent Medical 2018 & International Conference on Transportation and Traffic Engineering 2018, pp. 196–199 (2018)

    Google Scholar 

Download references

Acknowledgments

This study has been partly supported by the project ESC funded by the Academy of Finland (grant No.308980) and the Estonian Ministry of Education and Research institutional research grant no. IUT33-13. We would like to thank Marius Mikučionis for his assistance with UPPAAL STRATEGO. We also thank the anonymous reviewers for their inputs and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Shokri-Manninen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shokri-Manninen, F., Vain, J., Waldén, M. (2020). Formal Verification of COLREG-Based Navigation of Maritime Autonomous Systems. In: de Boer, F., Cerone, A. (eds) Software Engineering and Formal Methods. SEFM 2020. Lecture Notes in Computer Science(), vol 12310. Springer, Cham. https://doi.org/10.1007/978-3-030-58768-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58768-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58767-3

  • Online ISBN: 978-3-030-58768-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics