[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Look Here! A Parametric Learning Based Approach to Redirect Visual Attention

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

Abstract

Across photography, marketing, and website design, being able to direct the viewer’s attention is a powerful tool. Motivated by professional workflows, we introduce an automatic method to make an image region more attention-capturing via subtle image edits that maintain realism and fidelity to the original. From an input image and a user-provided mask, our GazeShiftNet model predicts a distinct set of global parametric transformations to be applied to the foreground and background image regions separately. We present the results of quantitative and qualitative experiments that demonstrate improvements over prior state-of-the-art. In contrast to existing attention shifting algorithms, our global parametric approach better preserves image semantics and avoids typical generative artifacts. Our edits enable inference at interactive rates on any image size, and easily generalize to videos. Extensions of our model allow for multi-style edits and the ability to both increase and attenuate attention in an image region. Furthermore, users can customize the edited images by dialing the edits up or down via interpolations in parameter space. This paper presents a practical tool that can simplify future image editing pipelines.

Work done while Youssef was interning at Adobe Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Because the provided code could not reproduce the high quality results presented in their paper, for favorable comparison, we directly used images from their project page: https://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/Software/saliencyManipulation/.

  2. 2.

    Relative saliency increases can grow large when the corresponding instance has an average initial saliency value near zero.

References

  1. Achanta, R., Süsstrunk, S.: Saliency detection for content-aware image resizing. In: ICIP (2009)

    Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: A randomized correspondence algorithm for structural image editing. In: TOG (2009)

    Google Scholar 

  3. Bianco, S., Cusano, C., Piccoli, F., Schettini, R.: Learning parametric functions for color image enhancement. In: International Workshop on Computational Color Imaging (2019)

    Google Scholar 

  4. Borji, A.: Saliency prediction in the deep learning era: successes and limitations. TPAMI (2019)

    Google Scholar 

  5. Bylinskii, Z., et al.: Learning visual importance for graphic designs and data visualizations. In: UIST (2017)

    Google Scholar 

  6. Bylinskii, Z., Recasens, A., Borji, A., Oliva, A., Torralba, A., Durand, F.: Where should saliency models look next? In: ECCV (2016)

    Google Scholar 

  7. Chandakkar, P.S., Li, B.: A structured approach to predicting image enhancement parameters. In: WACV (2016)

    Google Scholar 

  8. Chen, S.E., Williams, L.: View interpolation for image synthesis. In: SIGGRAPH (1993)

    Google Scholar 

  9. Chen, Y.C., Chang, K.J., Tsai, Y.H., Wang, Y.C.F., Chiu, W.C.: Guide your eyes: learning image manipulation under saliency guidance. In: BMVC (2019)

    Google Scholar 

  10. Cornia, M., Baraldi, L., Cucchiara, R.: Show, control and tell: a framework for generating controllable and grounded captions. In: CVPR (2019)

    Google Scholar 

  11. Fosco, C., et al.: How much time do you have? modeling multi-duration saliency. In: CVPR (2020)

    Google Scholar 

  12. Fried, O., Shechtman, E., Goldman, D.B., Finkelstein, A.: Finding distractors in images. In: CVPR (2015)

    Google Scholar 

  13. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  14. Gatys, L.A., Kümmerer, M., Wallis, T.S., Bethge, M.: Guiding human gaze with convolutional neural networks. arXiv preprint arXiv:1712.06492 (2017)

  15. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  16. Hagiwara, A., Sugimoto, A., Kawamoto, K.: Saliency-based image editing for guiding visual attention. In: Proceedings of the 1st International Workshop on Pervasive Eye Tracking & Mobile Eye-based Interaction (2011)

    Google Scholar 

  17. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH (2001)

    Google Scholar 

  18. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. In: SIGGRAPH (2018)

    Google Scholar 

  19. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  20. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. In: ICLR (2019)

    Google Scholar 

  21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  22. Kaufman, L., Lischinski, D., Werman, M.: Content-aware automatic photo enhancement. In: Computer Graphics Forum (2012)

    Google Scholar 

  23. Kolkin, N.I., Shakhnarovich, G., Shechtman, E.: Training deep networks to be spatially sensitive. In: ICCV (2017)

    Google Scholar 

  24. Koutras, P., Maragos, P.: SUSiNEt: see, understand and summarize it. In: CVPR Workshops (2019)

    Google Scholar 

  25. Li, N., Zhao, X., Yang, Y., Zou, X.: Objects classification by learning-based visual saliency model and convolutional neural network. Comput. Intell. Neurosci. 2016, 1–12 (2016)

    Google Scholar 

  26. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)

    Google Scholar 

  27. Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: CVPR (2014)

    Google Scholar 

  28. Mateescu, V.A., Bajić, I.V.: Attention retargeting by color manipulation in images. In: Proceedings of the 1st International Workshop on Perception Inspired Video Processing (2014)

    Google Scholar 

  29. Mathe, S., Sminchisescu, C.: Dynamic eye movement datasets and learnt saliency models for visual action recognition. In: ECCV (2012)

    Google Scholar 

  30. Mechrez, R., Shechtman, E., Zelnik-Manor, L.: Saliency driven image manipulation. Mach. Vis. Appl. 30(2), 189–202 (2019). https://doi.org/10.1007/s00138-018-01000-w

    Article  Google Scholar 

  31. Mejjati, Y.A., Richardt, C., Tompkin, J., Cosker, D., Kim, K.I.: Unsupervised attention-guided image-to-image translation. In: NeurIPS (2018)

    Google Scholar 

  32. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018)

    Google Scholar 

  33. Moosmann, F., Larlus, D., Jurie, F.: Learning saliency maps for object categorization. In: ECCV (2006)

    Google Scholar 

  34. Newman, A., et al.: TurkEyes: a web-based toolbox for crowdsourcing attention data. In: ACM CHI Conference on Human Factors in Computing Systems (2020)

    Google Scholar 

  35. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: GauGAN: semantic image synthesis with spatially adaptive normalization. In: SIGGRAPH (2019)

    Google Scholar 

  36. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)

    Google Scholar 

  37. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. TOG (2003)

    Google Scholar 

  38. Shen, C., Zhao, Q.: Webpage saliency. In: ECCV (2014)

    Google Scholar 

  39. Su, S.L., Durand, F., Agrawala, M.: De-emphasis of distracting image regions using texture power maps. In: ICCV Workshops (2005)

    Google Scholar 

  40. Tsai, Y.H., Shen, X., Lin, Z., Sunkavalli, K., Lu, X., Yang, M.H.: Deep image harmonization. In: CVPR (2017)

    Google Scholar 

  41. Wang, W., Shen, J., Cheng, M.M., Shao, L.: An iterative and cooperative top-down and bottom-up inference network for salient object detection. In: CVPR (2019)

    Google Scholar 

  42. Wang, W., Zhao, S., Shen, J., Hoi, S.C.H., Borji, A.: Salient object detection with pyramid attention and salient edges. In: CVPR (2019)

    Google Scholar 

  43. Wong, L.K., Low, K.L.: Saliency retargeting: an approach to enhance image aesthetics. In: WACV-Workshop (2011)

    Google Scholar 

  44. Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y.: Automatic photo adjustment using deep neural networks. TOG 35, 1–15 (2016)

    Google Scholar 

  45. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: ICML (2019)

    Google Scholar 

  46. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  47. Zheng, Q., Jiao, J., Cao, Y., Lau, R.W.: Task-driven webpage saliency. In: ECCV (2018)

    Google Scholar 

  48. Zhou, L., Zhang, Y., Jiang, Y., Zhang, T., Fan, W.: Re-caption: saliency-enhanced image captioning through two-phase learning. IEEE Trans. Image Process. (2020)

    Google Scholar 

  49. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  50. Zünd, F., Pritch, Y., Sorkine-Hornung, A., Mangold, S., Gross, T.: Content-aware compression using saliency-driven image retargeting. In: ICIP (2013)

    Google Scholar 

Download references

Acknowledgements

Y. A. Mejjati thanks the Marie Sklodowska-Curie grant No 665992, and the Centre for Doctoral Training in Digital Entertainment (CDE), EP/L016540/1. K. I. Kim thanks Institute of Information & communications Technology Planning Evaluation (IITP) grant (No. 20200013360011001, Artificial Intelligence Graduate School support (UNIST)) funded by the Korea government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef A. Mejjati .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 35318 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mejjati, Y.A., Gomez, C.F., Kim, K.I., Shechtman, E., Bylinskii, Z. (2020). Look Here! A Parametric Learning Based Approach to Redirect Visual Attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics