Abstract
Epipolar constraints are at the core of feature matching and depth estimation in current multi-person multi-camera 3D human pose estimation methods. Despite the satisfactory performance of this formulation in sparser crowd scenes, its effectiveness is frequently challenged under denser crowd circumstances mainly due to two sources of ambiguity. The first is the mismatch of human joints resulting from the simple cues provided by the Euclidean distances between joints and epipolar lines. The second is the lack of robustness from the naive formulation of the problem as a least squares minimization. In this paper, we depart from the multi-person 3D pose estimation formulation, and instead reformulate it as crowd pose estimation. Our method consists of two key components: a graph model for fast cross-view matching, and a maximum a posteriori (MAP) estimator for the reconstruction of the 3D human poses. We demonstrate the effectiveness and superiority of our proposed method on four benchmark datasets. Our code is available at: https://github.com/HeCraneChen/3D-Crowd-Pose-Estimation-Based-on-MVG.
H. Chen and P. Guo—Equal first author contribution.
G. H. Lee and G. Chirikjian—Jointly supervised this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baqué, P., Fleuret, F., Fua, P.: Deep occlusion reasoning for multi-camera multi-target detection. In: Proceedings of the ICCV, pp. 271–279 (2017)
Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures for multiple human pose estimation. In: Proceedings of the CVPR, pp. 1669–1676 (2014)
Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures revisited: Multiple human pose estimation. IEEE Trans. PAMI 38(10), 1929–1942 (2015)
Belagiannis, V., Wang, X., Schiele, B., Fua, P., Ilic, S., Navab, N.: Multiple human pose estimation with temporally consistent 3D pictorial structures. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 742–754. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_52
Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34
Campbell, D., Petersson, L., Kneip, L., Li, H.: Globally-optimal inlier set maximisation for simultaneous camera pose and feature correspondence. In: Proceedings of ICCV, pp. 1–10 (2017)
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. In: arXiv preprint arXiv:1812.08008 (2018)
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the CVPR, pp. 7291–7299 (2017)
Chavdarova, T., et al.: WILDTRACK: a multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the CVPR, pp. 5030–5039 (2018)
Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. In: Proceedings of the CVPR, pp. 7035–7043 (2017)
Conn, A.R., Gould, N.I., Toint, P.L.: Trust Region Methods, vol. 1. SIAM, Philadelphia (2000)
Dinesh Reddy, N., Vo, M., Narasimhan, S.G.: CarFusion: combining point tracking and part detection for dynamic 3D reconstruction of vehicles. In: Proceedings CVPR, pp. 1906–1915 (2018)
Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X.: Fast and robust multi-person 3D pose estimation from multiple views. In: Proceedings of the CVPR, pp. 7792–7801 (2019)
Duff, T., Kohn, K., Leykin, A., Pajdla, T.: PLMP-point-line minimal problems in complete multi-view visibility. In: Proceedings of the ICCV, pp. 1675–1684 (2019)
Ess, A., Leibe, B., Schindler, K., Gool, L.V.: Robust multiperson tracking from a mobile platform. IEEE Trans. PAMI 31, 1831–1846 (2009)
Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: Proceedings of the CVPR, pp. 1–8. IEEE (2008)
Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Tracking by prediction: a deep generative model for mutli-person localisation and tracking. In: Proceedings of the WACV, pp. 1122–1132. IEEE (2018)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Harris, C.G., Stephens, M., et al.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, pp. 10–5244. Citeseer (1988)
Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose. In: Proceedings of the ICCV, pp. 7718–7727 (2019)
Jahangiri, E., Yuille, A.L.: Generating multiple diverse hypotheses for human 3D pose consistent with 2D joint detections. In: Proceedings of the ICCVW, pp. 805–814 (2017)
Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4), 325–340 (1987)
Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: Proceedings of the ICCV (2015)
Kadkhodamohammadi, A., Padoy, N.: A generalizable approach for multi-view 3D human pose regression. arXiv preprint arXiv:1804.10462 (2018)
Korman, S., Milam, M., Soatto, S.: OATM: occlusion aware template matching by consensus set maximization. In: Proceedings of the CVPR, pp. 2675–2683 (2018)
Kubo, H., Jayasuriya, S., Iwaguchi, T., Funatomi, T., Mukaigawa, Y., Narasimhan, S.G.: Programmable non-epipolar indirect light transport: Capture and analysis. IEEE Trans. VCG (2019)
Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: Proceedings of the CVPR, pp. 9887–9895 (2019)
Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H.S., Lu, C.: Crowdpose: efficient crowded scenes pose estimation and a new benchmark. In: Proceedings of the CVPR, pp. 10863–10872 (2019)
Li, Y., Agustsson, E., Gu, S., Timofte, R., Van Gool, L.: CARN: convolutional anchored regression network for fast and accurate single image super-resolution. In: Proceedings of the ECCV, p. 0 (2018)
Li, Y., Gu, S., Mayer, C., Van Gool, L., Timofte, R.: Group sparsity: the hinge between filter pruning and decomposition for network compression. In: Proceedings of CVPR (2020)
Li, Y., Tsiminaki, V., Timofte, R., Pollefeys, M., Van Gool, L.: 3D appearance super-resolution with deep learning. In: Proceedings of the CVPR, pp. 9671–9680 (2019)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, X., et al.: Extremely dense point correspondences using a learned feature descriptor. In: Proceedings of the CVPR (2020)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the ICCV, vol. 2, pp. 1150–1157 (1999)
Mahendran, S., Ali, H., Vidal, R.: 3D pose regression using convolutional neural networks. In: Proceedings of the ICCVW, pp. 2174–2182 (2017)
Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the CVPR (2017)
Reddy, N.D., Vo, M., Narasimhan, S.G.: Occlusion-Net: 2D/3D occluded keypoint localization using graph networks. In: Proceedings of the CVPR, pp. 7326–7335 (2019)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Sindagi, V.A., Patel, V.M.: Multi-level bottom-top and top-bottom feature fusion for crowd counting. In: Proceedings of the ICCV, pp. 1002–1012 (2019)
Stoll, C., Hasler, N., Gall, J., Seidel, H.P., Theobalt, C.: Fast articulated motion tracking using a sums of Gaussians body model. In: Proceedings of the ICCV, pp. 951–958. IEEE (2011)
Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33
Vo, M., Yumer, E., Sunkavalli, K., Hadap, S., Sheikh, Y., Narasimhan, S.G.: Self-supervised multi-view person association and its applications. IEEE Trans. PAMI (2020)
Wang, C., Wang, Y., Lin, Z., Yuille, A.L.: Robust 3D human pose estimation from single images or video sequences. IEEE Trans. PAMI 41(5), 1227–1241 (2018)
Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the CVPR, pp. 4724–4732 (2016)
Windheuser, T., Cremers, D.: A convex solution to spatially-regularized correspondence problems. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 853–868. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_52
Xin, S., Nousias, S., Kutulakos, K.N., Sankaranarayanan, A.C., Narasimhan, S.G., Gkioulekas, I.: A theory of fermat paths for non-line-of-sight shape reconstruction. In: Proceedings of the CVPR, pp. 6800–6809 (2019)
Theobald, S., Schmitt, A., Diebold, P.: Comparing scaling agile frameworks based on underlying practices. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 88–96. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_11
Acknowledgements
The authors would like to thank Yawei Li and Weixiao Liu for useful discussion. This work is supported in parts by the Office of Naval Research Award N00014-17-1-2142 and the Singapore MOE Tier 1 grant R-252-000-A65-114.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, H., Guo, P., Li, P., Lee, G.H., Chirikjian, G. (2020). Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-view Geometry. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-58580-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58579-2
Online ISBN: 978-3-030-58580-8
eBook Packages: Computer ScienceComputer Science (R0)