[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-view Geometry

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12348))

Included in the following conference series:

Abstract

Epipolar constraints are at the core of feature matching and depth estimation in current multi-person multi-camera 3D human pose estimation methods. Despite the satisfactory performance of this formulation in sparser crowd scenes, its effectiveness is frequently challenged under denser crowd circumstances mainly due to two sources of ambiguity. The first is the mismatch of human joints resulting from the simple cues provided by the Euclidean distances between joints and epipolar lines. The second is the lack of robustness from the naive formulation of the problem as a least squares minimization. In this paper, we depart from the multi-person 3D pose estimation formulation, and instead reformulate it as crowd pose estimation. Our method consists of two key components: a graph model for fast cross-view matching, and a maximum a posteriori (MAP) estimator for the reconstruction of the 3D human poses. We demonstrate the effectiveness and superiority of our proposed method on four benchmark datasets. Our code is available at: https://github.com/HeCraneChen/3D-Crowd-Pose-Estimation-Based-on-MVG.

H. Chen and P. Guo—Equal first author contribution.

G. H. Lee and G. Chirikjian—Jointly supervised this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baqué, P., Fleuret, F., Fua, P.: Deep occlusion reasoning for multi-camera multi-target detection. In: Proceedings of the ICCV, pp. 271–279 (2017)

    Google Scholar 

  2. Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures for multiple human pose estimation. In: Proceedings of the CVPR, pp. 1669–1676 (2014)

    Google Scholar 

  3. Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S.: 3D pictorial structures revisited: Multiple human pose estimation. IEEE Trans. PAMI 38(10), 1929–1942 (2015)

    Article  Google Scholar 

  4. Belagiannis, V., Wang, X., Schiele, B., Fua, P., Ilic, S., Navab, N.: Multiple human pose estimation with temporally consistent 3D pictorial structures. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 742–754. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_52

    Chapter  Google Scholar 

  5. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  6. Campbell, D., Petersson, L., Kneip, L., Li, H.: Globally-optimal inlier set maximisation for simultaneous camera pose and feature correspondence. In: Proceedings of ICCV, pp. 1–10 (2017)

    Google Scholar 

  7. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. In: arXiv preprint arXiv:1812.08008 (2018)

  8. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the CVPR, pp. 7291–7299 (2017)

    Google Scholar 

  9. Chavdarova, T., et al.: WILDTRACK: a multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the CVPR, pp. 5030–5039 (2018)

    Google Scholar 

  10. Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. In: Proceedings of the CVPR, pp. 7035–7043 (2017)

    Google Scholar 

  11. Conn, A.R., Gould, N.I., Toint, P.L.: Trust Region Methods, vol. 1. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  12. Dinesh Reddy, N., Vo, M., Narasimhan, S.G.: CarFusion: combining point tracking and part detection for dynamic 3D reconstruction of vehicles. In: Proceedings CVPR, pp. 1906–1915 (2018)

    Google Scholar 

  13. Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X.: Fast and robust multi-person 3D pose estimation from multiple views. In: Proceedings of the CVPR, pp. 7792–7801 (2019)

    Google Scholar 

  14. Duff, T., Kohn, K., Leykin, A., Pajdla, T.: PLMP-point-line minimal problems in complete multi-view visibility. In: Proceedings of the ICCV, pp. 1675–1684 (2019)

    Google Scholar 

  15. Ess, A., Leibe, B., Schindler, K., Gool, L.V.: Robust multiperson tracking from a mobile platform. IEEE Trans. PAMI 31, 1831–1846 (2009)

    Article  Google Scholar 

  16. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: Proceedings of the CVPR, pp. 1–8. IEEE (2008)

    Google Scholar 

  17. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Tracking by prediction: a deep generative model for mutli-person localisation and tracking. In: Proceedings of the WACV, pp. 1122–1132. IEEE (2018)

    Google Scholar 

  18. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  19. Harris, C.G., Stephens, M., et al.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, pp. 10–5244. Citeseer (1988)

    Google Scholar 

  20. Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose. In: Proceedings of the ICCV, pp. 7718–7727 (2019)

    Google Scholar 

  21. Jahangiri, E., Yuille, A.L.: Generating multiple diverse hypotheses for human 3D pose consistent with 2D joint detections. In: Proceedings of the ICCVW, pp. 805–814 (2017)

    Google Scholar 

  22. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4), 325–340 (1987)

    Article  MathSciNet  Google Scholar 

  23. Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: Proceedings of the ICCV (2015)

    Google Scholar 

  24. Kadkhodamohammadi, A., Padoy, N.: A generalizable approach for multi-view 3D human pose regression. arXiv preprint arXiv:1804.10462 (2018)

  25. Korman, S., Milam, M., Soatto, S.: OATM: occlusion aware template matching by consensus set maximization. In: Proceedings of the CVPR, pp. 2675–2683 (2018)

    Google Scholar 

  26. Kubo, H., Jayasuriya, S., Iwaguchi, T., Funatomi, T., Mukaigawa, Y., Narasimhan, S.G.: Programmable non-epipolar indirect light transport: Capture and analysis. IEEE Trans. VCG (2019)

    Google Scholar 

  27. Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: Proceedings of the CVPR, pp. 9887–9895 (2019)

    Google Scholar 

  28. Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H.S., Lu, C.: Crowdpose: efficient crowded scenes pose estimation and a new benchmark. In: Proceedings of the CVPR, pp. 10863–10872 (2019)

    Google Scholar 

  29. Li, Y., Agustsson, E., Gu, S., Timofte, R., Van Gool, L.: CARN: convolutional anchored regression network for fast and accurate single image super-resolution. In: Proceedings of the ECCV, p. 0 (2018)

    Google Scholar 

  30. Li, Y., Gu, S., Mayer, C., Van Gool, L., Timofte, R.: Group sparsity: the hinge between filter pruning and decomposition for network compression. In: Proceedings of CVPR (2020)

    Google Scholar 

  31. Li, Y., Tsiminaki, V., Timofte, R., Pollefeys, M., Van Gool, L.: 3D appearance super-resolution with deep learning. In: Proceedings of the CVPR, pp. 9671–9680 (2019)

    Google Scholar 

  32. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  33. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  34. Liu, X., et al.: Extremely dense point correspondences using a learned feature descriptor. In: Proceedings of the CVPR (2020)

    Google Scholar 

  35. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the ICCV, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  36. Mahendran, S., Ali, H., Vidal, R.: 3D pose regression using convolutional neural networks. In: Proceedings of the ICCVW, pp. 2174–2182 (2017)

    Google Scholar 

  37. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the CVPR (2017)

    Google Scholar 

  38. Reddy, N.D., Vo, M., Narasimhan, S.G.: Occlusion-Net: 2D/3D occluded keypoint localization using graph networks. In: Proceedings of the CVPR, pp. 7326–7335 (2019)

    Google Scholar 

  39. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  40. Sindagi, V.A., Patel, V.M.: Multi-level bottom-top and top-bottom feature fusion for crowd counting. In: Proceedings of the ICCV, pp. 1002–1012 (2019)

    Google Scholar 

  41. Stoll, C., Hasler, N., Gall, J., Seidel, H.P., Theobalt, C.: Fast articulated motion tracking using a sums of Gaussians body model. In: Proceedings of the ICCV, pp. 951–958. IEEE (2011)

    Google Scholar 

  42. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  43. Vo, M., Yumer, E., Sunkavalli, K., Hadap, S., Sheikh, Y., Narasimhan, S.G.: Self-supervised multi-view person association and its applications. IEEE Trans. PAMI (2020)

    Google Scholar 

  44. Wang, C., Wang, Y., Lin, Z., Yuille, A.L.: Robust 3D human pose estimation from single images or video sequences. IEEE Trans. PAMI 41(5), 1227–1241 (2018)

    Article  Google Scholar 

  45. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the CVPR, pp. 4724–4732 (2016)

    Google Scholar 

  46. Windheuser, T., Cremers, D.: A convex solution to spatially-regularized correspondence problems. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 853–868. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_52

    Chapter  Google Scholar 

  47. Xin, S., Nousias, S., Kutulakos, K.N., Sankaranarayanan, A.C., Narasimhan, S.G., Gkioulekas, I.: A theory of fermat paths for non-line-of-sight shape reconstruction. In: Proceedings of the CVPR, pp. 6800–6809 (2019)

    Google Scholar 

  48. Theobald, S., Schmitt, A., Diebold, P.: Comparing scaling agile frameworks based on underlying practices. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 88–96. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_11

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yawei Li and Weixiao Liu for useful discussion. This work is supported in parts by the Office of Naval Research Award N00014-17-1-2142 and the Singapore MOE Tier 1 grant R-252-000-A65-114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Guo, P., Li, P., Lee, G.H., Chirikjian, G. (2020). Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-view Geometry. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58580-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58579-2

  • Online ISBN: 978-3-030-58580-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics