[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

TCGM: An Information-Theoretic Framework for Semi-supervised Multi-modality Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12348))

Included in the following conference series:

Abstract

Fusing data from multiple modalities provides more information to train machine learning systems. However, it is prohibitively expensive and time-consuming to label each modality with a large amount of data, which leads to a crucial problem of semi-supervised multi-modal learning. Existing methods suffer from either ineffective fusion across modalities or lack of theoretical guarantees under proper assumptions. In this paper, we propose a novel information-theoretic approach - namely, Total Correlation Gain Maximization (TCGM) – for semi-supervised multi-modal learning, which is endowed with promising properties: (i) it can utilize effectively the information across different modalities of unlabeled data points to facilitate training classifiers of each modality (ii) it has theoretical guarantee to identify Bayesian classifiers, i.e., the ground truth posteriors of all modalities. Specifically, by maximizing TC-induced loss (namely TC gain) over classifiers of all modalities, these classifiers can cooperatively discover the equivalent class of ground-truth classifiers; and identify the unique ones by leveraging limited percentage of labeled data. We apply our method to various tasks and achieve state-of-the-art results, including the news classification (Newsgroup dataset), emotion recognition (IEMOCAP and MOSI datasets), and disease prediction (Alzheimer’s Disease Neuroimaging Initiative dataset).

X. Sun and Y. Xu—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://qwone.com/~jason/20Newsgroups/.

  2. 2.

    PAM (Partitioning Around Medoïds preprocessing), SMI (Supervised Mutual Information preprocessing) and UMI (Unsupervised Mutual Information preprocessing).

  3. 3.

    www.loni.ucla.edu/ADNI.

References

  1. Achille, A., Soatto, S.: Emergence of invariance and disentanglement in deep representations. J. Mach. Learn. Res. 19(1), 1947–1980 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)

    Article  Google Scholar 

  3. Balcan, M.F., Blum, A., Yang, K.: Co-training and expansion: towards bridging theory and practice. In: Advances in Neural Information Processing Systems, pp. 89–96 (2005)

    Google Scholar 

  4. Belghazi, M.I., et al.: MINE: mutual information neural estimation. arXiv preprint arXiv:1801.04062 (2018)

  5. Bisson, G., Grimal, C.: Co-clustering of multi-view datasets: a parallelizable approach. In: 2012 IEEE 12th International Conference on Data Mining, pp. 828–833. IEEE (2012)

    Google Scholar 

  6. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100. ACM (1998)

    Google Scholar 

  7. Busso, C., et al.: IEMOCAP: interactive emotional dyadic motion capture database. Lang. Resour. Eval. 42, 335–359 (2008)

    Article  Google Scholar 

  8. Cao, P., Xu, Y., Kong, Y., Wang, Y.: Max-MIG: an information theoretic approach for joint learning from crowds. In: ICLR 2019 (2018)

    Google Scholar 

  9. Chandar, S., Khapra, M.M., Larochelle, H., Ravindran, B.: Correlational neural networks. Neural Comput. 28(2), 257–285 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chang, X., Xiang, T., Hospedales, T.M.: Scalable and effective deep CCA via soft decorrelation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1488–1497 (2018)

    Google Scholar 

  11. Cheng, Y., Zhao, X., Huang, K., Tan, T.: Semi-supervised learning and feature evaluation for RGB-D object recognition. Comput. Vis. Image Underst. 139, 149–160 (2015)

    Article  Google Scholar 

  12. Christoudias, C.M., Saenko, K., Morency, L.P., Darrell, T.: Co-adaptation of audio-visual speech and gesture classifiers. In: Proceedings of the 8th International Conference on Multimodal Interfaces, pp. 84–91. ACM (2006)

    Google Scholar 

  13. Dasgupta, S., Littman, M.L., McAllester, D.A.: PAC generalization bounds for co-training. In: Advances in Neural Information Processing Systems, pp. 375–382 (2002)

    Google Scholar 

  14. Hjelm, R.D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Trischler, A., Bengio, Y.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

  15. Huang, S.L., Suh, C., Zheng, L.: Euclidean information theory of networks. IEEE Trans. Inf. Theory 61(12), 6795–6814 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hussain, S.F., Grimal, C., Bisson, G.: An improved co-similarity measure for document clustering. In: International Conference on Machine Learning and Applications (2010)

    Google Scholar 

  17. Jones, R.: Learning to extract entities from labeled and unlabeled text. Ph.D. thesis, Citeseer (2005)

    Google Scholar 

  18. Kim, D.H., Lee, M.K., Choi, D.Y., Song, B.C.: Multi-modal emotion recognition using semi-supervised learning and multiple neural networks in the wild. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 529–535. ACM (2017)

    Google Scholar 

  19. Kong, Y., Schoenebeck, G.: Water from two rocks: maximizing the mutual information. In: Proceedings of the 2018 ACM Conference on Economics and Computation, pp. 177–194. ACM (2018)

    Google Scholar 

  20. Leskes, B.: The value of agreement, a new boosting algorithm. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 95–110. Springer, Heidelberg (2005). https://doi.org/10.1007/11503415_7

    Chapter  Google Scholar 

  21. Levin, A., Viola, P.A., Freund, Y.: Unsupervised improvement of visual detectors using co-training. In: ICCV, vol. 1, p. 2 (2003)

    Google Scholar 

  22. Lewis, D.D.: Naive (Bayes) at forty: the independence assumption in information retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 4–15. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026666

    Chapter  Google Scholar 

  23. Liu, Z., Shen, Y., Lakshminarasimhan, V.B., Liang, P.P., Zadeh, A., Morency, L.P.: Efficient low-rank multimodal fusion with modality-specific factors. In: ACL (2018)

    Google Scholar 

  24. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: NIPS (2001)

    Google Scholar 

  25. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 689–696 (2011)

    Google Scholar 

  26. Nguyen, X., Wainwright, M.J., Jordan, M.I.: Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Trans. Inf. Theory 56(11), 5847–5861 (2010)

    Article  MathSciNet  Google Scholar 

  27. Sohn, K., Shang, W., Lee, H.: Improved multimodal deep learning with variation of information. In: Advances in Neural Information Processing Systems, pp. 2141–2149 (2014)

    Google Scholar 

  28. Studenỳ, M., Vejnarová, J.: The multiinformation function as a tool for measuring stochastic dependence. In: Jordan, M.I. (ed.) Learning in Graphical Models. ASID, vol. 89, pp. 261–297. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5014-9_10

    Chapter  Google Scholar 

  29. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1979–1993 (2018)

    Article  Google Scholar 

  30. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. arXiv preprint arXiv:1809.10341 (2018)

  31. Wang, L., et al.: An efficient approach to informative feature extraction from multimodal data. arXiv preprint arXiv:1811.08979 (2018)

  32. Xu, Y., Zhao, S., Song, J., Stewart, R.J., Ermon, S.: A theory of usable information under computational constraints. ArXiv abs/2002.10689 (2020)

    Google Scholar 

  33. Yang, Y., Zhan, D.C., Sheng, X.R., Jiang, Y.: Semi-supervised multi-modal learning with incomplete modalities. In: IJCAI, pp. 2998–3004 (2018)

    Google Scholar 

  34. Zadeh, A., Zellers, R., Pincus, E., Morency, L.P.: MOSI: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos. ArXiv abs/1606.06259 (2016)

    Google Scholar 

Download references

Acknowledgement

Yizhou Wang’s work is supported by MOST-2018AAA0102004, NSFC-61625201, DFG TRR169/NSFC Major International Collaboration Project “Crossmodal Learning”. Yuqing Kong’s work is supported by Science and Technology Innovation 2030 “The New Generation of Artificial Intelligence” Major Project No. 2018AAA0100901, China. Thanks to Xinwei Sun’s girlfriend Yue Cao, for all her love and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqing Kong or Shanghang Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 2211 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, X. et al. (2020). TCGM: An Information-Theoretic Framework for Semi-supervised Multi-modality Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58580-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58579-2

  • Online ISBN: 978-3-030-58580-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics