[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Attention-Driven Dynamic Graph Convolutional Network for Multi-label Image Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12366))

Included in the following conference series:

Abstract

Recent studies often exploit Graph Convolutional Network (GCN) to model label dependencies to improve recognition accuracy for multi-label image recognition. However, constructing a graph by counting the label co-occurrence possibilities of the training data may degrade model generalizability, especially when there exist occasional co-occurrence objects in test images. Our goal is to eliminate such bias and enhance the robustness of the learnt features. To this end, we propose an Attention-Driven Dynamic Graph Convolutional Network (ADD-GCN) to dynamically generate a specific graph for each image. ADD-GCN adopts a Dynamic Graph Convolutional Network (D-GCN) to model the relation of content-aware category representations that are generated by a Semantic Attention Module (SAM). Extensive experiments on public multi-label benchmarks demonstrate the effectiveness of our method, which achieves mAPs of 85.2%, 96.0%, and 95.5% on MS-COCO, VOC2007, and VOC2012, respectively, and outperforms current state-of-the-art methods with a clear margin.

J. Ye, J. He, X. Peng—Equally-contributed first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, T., Wang, Z., Li, G., Lin, L.: Recurrent attentional reinforcement learning for multi-label image recognition. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  2. Chen, T., Xu, M., Hui, X., Wu, H., Lin, L.: Learning semantic-specific graph representation for multi-label image recognition. arXiv preprint arXiv:1908.07325 (2019)

  3. Chen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y.: Graph-based global reasoning networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 433–442 (2019)

    Google Scholar 

  4. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5177–5186 (2019)

    Google Scholar 

  5. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: Bing: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3286–3293 (2014)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  8. Ge, W., Yang, S., Yu, Y.: Multi-evidence filtering and fusion for multi-label classification, object detection and semantic segmentation based on weakly supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1277–1286 (2018)

    Google Scholar 

  9. Ge, Z., Mahapatra, D., Sedai, S., Garnavi, R., Chakravorty, R.: Chest x-rays classification: a multi-label and fine-grained problem. arXiv preprint arXiv:1807.07247 (2018)

  10. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448 (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. He, S., Xu, C., Guo, T., Xu, C., Tao, D.: Reinforced multi-label image classification by exploring curriculum. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  15. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recommendation, tagging, ranking & other missing label applications. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–944. ACM (2016)

    Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  17. Li, Q., Qiao, M., Bian, W., Tao, D.: Conditional graphical lasso for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2977–2986 (2016)

    Google Scholar 

  18. Li, X., Zhao, F., Guo, Y.: Multi-label image classification with a probabilistic label enhancement model. In: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI 2014, AUAI Press, Arlington, Virginia, United States, pp. 430–439 (2014). http://dl.acm.org/citation.cfm?id=3020751.3020796

  19. Li, Y., Huang, C., Loy, C.C., Tang, X.: Human attribute recognition by deep hierarchical contexts. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 684–700. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_41

    Chapter  Google Scholar 

  20. Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.): Microsoft COCO: common objects in context. ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  21. Liu, L., Guo, S., Huang, W., Scott, M.: Decoupling category-wise independence and relevance with self-attention for multi-label image classification. In: ICASSP 2019, pp. 1682–1686, May 2019. https://doi.org/10.1109/ICASSP.2019.8683665

  22. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS Workshop (2017)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  25. Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T.: A deeper look at dataset bias. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 37–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_2

    Chapter  Google Scholar 

  26. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR 2011, pp. 1521–1528. IEEE (2011)

    Google Scholar 

  27. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: a unified framework for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2016)

    Google Scholar 

  28. Wang, M., Luo, C., Hong, R., Tang, J., Feng, J.: Beyond object proposals: random crop pooling for multi-label image recognition. IEEE Trans. Image Process. 25(12), 5678–5688 (2016)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y., et al.: Multi-label classification with label graph superimposing. arXiv preprint arXiv:1911.09243 (2019)

  30. Wang, Z., Chen, T., Li, G., Xu, R., Lin, L.: Multi-label image recognition by recurrently discovering attentional regions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 464–472 (2017)

    Google Scholar 

  31. Wei, Y., et al.: HCP: a flexible CNN framework for multi-label image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1901–1907 (2015)

    Article  Google Scholar 

  32. Yang, H., Tianyi Zhou, J., Zhang, Y., Gao, B.B., Wu, J., Cai, J.: Exploit bounding box annotations for multi-label object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–288 (2016)

    Google Scholar 

  33. Yang, X., Li, Y., Luo, J.: Pinterest board recommendation for Twitter users. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 963–966. ACM (2015)

    Google Scholar 

  34. Zhang, J., Wu, Q., Shen, C., Zhang, J., Lu, J.: Multilabel image classification with regional latent semantic dependencies. IEEE Trans. Multimedia 20(10), 2801–2813 (2018)

    Article  Google Scholar 

  35. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  36. Zhu, F., Li, H., Ouyang, W., Yu, N., Wang, X.: Learning spatial regularization with image-level supervisions for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5513–5522 (2017)

    Google Scholar 

  37. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (U1813218, U1713208), Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-QYZX-092), Guangdong Special Support Program (2016TX03X276), and Shenzhen Basic Research Program (JSGG20180507182100698, CXB201104220032A), Shenzhen Institute of Artificial Intelligence and Robotics for Society. We also appreciate Xiaoping Lai and Hao Xing from VIPShop Inc. who cooperate this project with us and provide validation Fashion data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3462 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, J., He, J., Peng, X., Wu, W., Qiao, Y. (2020). Attention-Driven Dynamic Graph Convolutional Network for Multi-label Image Recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58589-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58588-4

  • Online ISBN: 978-3-030-58589-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics