[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Deformation-Aware 3D Model Embedding and Retrieval

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

Abstract

We introduce a new problem of retrieving 3D models that are deformable to a given query shape and present a novel deep deformation-aware embedding to solve this retrieval task. 3D model retrieval is a fundamental operation for recovering a clean and complete 3D model from a noisy and partial 3D scan. However, given a finite collection of 3D shapes, even the closest model to a query may not be satisfactory. This motivates us to apply 3D model deformation techniques to adapt the retrieved model so as to better fit the query. Yet, certain restrictions are enforced in most 3D deformation techniques to preserve important features of the original model that prevent a perfect fitting of the deformed model to the query. This gap between the deformed model and the query induces asymmetric relationships among the models, which cannot be handled by typical metric learning techniques. Thus, to retrieve the best models for fitting, we propose a novel deep embedding approach that learns the asymmetric relationships by leveraging location-dependent egocentric distance fields. We also propose two strategies for training the embedding network. We demonstrate that both of these approaches outperform other baselines in our experiments with both synthetic and real data. Our project page can be found at deformscan2cad.github.io.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is not exactly the same with the property of metrics, identity of indiscernibles, meaning the two-way identity (\(e_\mathcal {D}(\mathbf {s}, \mathbf {t}) = 0 \Leftrightarrow \mathbf {s} = \mathbf {t}\)). We cannot guarantee that \(e_\mathcal {D}(\mathbf {s}, \mathbf {t}) = 0 \Rightarrow \mathbf {s} = \mathbf {t}\) from our definition of \(e_\mathcal {D}\). Nevertheless, this is not necessary in the retrieval problem.

  2. 2.

    Due to space restrictions we present results of Image-to-CAD in our supplementary material.

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.J.: Learning representations and generative models for 3D point clouds. In: ICML (2018)

    Google Scholar 

  2. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: WWW (2013)

    Google Scholar 

  3. Aldrovandi, R., Pereira, J.: An Introduction to Geometrical Physics. World Scientific (1995)

    Google Scholar 

  4. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: CVPR (2016)

    Google Scholar 

  5. Avetisyan, A., Dahnert, M., Dai, A., Savva, M., Chang, A.X., Nießner, M.: Scan2CAD: learning cad model alignment in RGB-D scans. In: CVPR (2019)

    Google Scholar 

  6. Avetisyan, A., Dai, A., Nießner, M.: End-to-end cad model retrieval and 9DoF alignment in 3D scans. In: ICCV (2019)

    Google Scholar 

  7. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors and structured data (2013)

    Google Scholar 

  8. Buldygin, V., et al.: Metric Characterization of Random Variables and Random Processes. American Mathematical Society (2000)

    Google Scholar 

  9. Bylow, E., Sturm, J., Kerl, C., Kahl, F., Cremers, D.: Real-time camera tracking and 3D reconstruction using signed distance functions. In: RSS (2013)

    Google Scholar 

  10. Chang, A.X., et al.: Shapenet: an information-rich 3D model repository (2015)

    Google Scholar 

  11. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image similarity through ranking. J. Mach. Learn. Res. 11, 1109–1135 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Chen, L., Lian, X.: Efficient similarity search in nonmetric spaces with local constant embedding. IEEE Trans. Knowl. Data Eng. 20(3), 321–336 (2008)

    Article  Google Scholar 

  13. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (2005)

    Google Scholar 

  14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  15. Dahnert, M., Dai, A., Guibas, L., Nießner, M.: Joint embedding of 3D scan and cad objects. In: ICCV (2019)

    Google Scholar 

  16. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. In: ACM SIGGRAPH (2017)

    Google Scholar 

  17. Dai, A., Ruizhongtai Qi, C., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: CVPR (2017)

    Google Scholar 

  18. Deng, H., Birdal, T., Ilic, S.: PPFNet: global context aware local features for robust 3D point matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 195–205 (2018)

    Google Scholar 

  19. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: KDD (2017)

    Google Scholar 

  20. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2016)

    Google Scholar 

  21. G, V.K.B., Carneiro, G., Reid, I.: Learning local image descriptors with deep siamese and triplet convolutional networks by minimizing global loss functions. In: CVPR (2016)

    Google Scholar 

  22. Garcia, N., Vogiatzis, G.: Learning non-metric visual similarity for image retrieval. Image Vis. Comput. 82, 18–25 (2019)

    Article  Google Scholar 

  23. Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: Visualization (1998)

    Google Scholar 

  24. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: Deep self-supervised cycle-consistent deformation for few-shot shape segmentation. In: Eurographics Symposium on Geometry Processing (2019)

    Google Scholar 

  25. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD (2016)

    Google Scholar 

  26. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)

    Google Scholar 

  27. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: unifying feature and metric learning for patch-based matching. In: CVPR (2015)

    Google Scholar 

  28. Hanocka, R., Fish, N., Wang, Z., Giryes, R., Fleishman, S., Cohen-Or, D.: ALIGNet: partial-shape agnostic alignment via unsupervised learning. ACM Trans. Graph. 38(1), 1–14 (2018)

    Article  Google Scholar 

  29. Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: NIPS (2003)

    Google Scholar 

  30. Huang, J., Dai, A., Guibas, L.J., Nießner, M.: 3Dlite: towards commodity 3D scanning for content creation. In: ACM SIGGRAPH Asia (2017)

    Google Scholar 

  31. Huang, J., Su, H., Guibas, L.: Robust watertight manifold surface generation method for shapenet models (2018)

    Google Scholar 

  32. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. In: ACM SIGGRAPH (2005)

    Google Scholar 

  33. Jack, D., et al.: Learning free-Form deformations for 3D object reconstruction. In: ICCV (2018)

    Google Scholar 

  34. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. In: ACM SIGGRAPH (2007)

    Google Scholar 

  35. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. In: ACM SIGGRAPH (2005)

    Google Scholar 

  36. Kraevoy, V., Sheffer, A., Shamir, A., Cohen-Or, D.: Non-homogeneous resizing of complex models. In: ACM SIGGRAPH Asia (2006)

    Google Scholar 

  37. Kulis, B., et al.: Metric learning: a survey. Found. Trends® Mach. Learn. 5(4), 287–364 (2013)

    Google Scholar 

  38. Kurenkov, A., et al.: DeformNet: free-form deformation network for 3D shape reconstruction from a single image. In: WACV (2018)

    Google Scholar 

  39. Li, Y., Dai, A., Guibas, L., Nießner, M.: Database-assisted object retrieval for real-time 3D reconstruction. In: Eurographics (2015)

    Google Scholar 

  40. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rossi, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: Shape Modeling Applications (2004)

    Google Scholar 

  41. Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. In: ACM SIGGRAPH (2008)

    Google Scholar 

  42. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. In: ACM SIGGRAPH (2005)

    Google Scholar 

  43. Liu, E.Y., Guo, Z., Zhang, X., Jojic, V., Wang, W.: Metric learning from relative comparisons by minimizing squared residual. In: ICDM (2012)

    Google Scholar 

  44. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  45. Mahalanobis, P.C.: On the generalized distance in statistics. In: Proceedings of the National Institute of Science. National Institute of Science of India (1936)

    Google Scholar 

  46. Morozov, S., Babenko, A.: Non-metric similarity graphs for maximum inner product search. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  47. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: ISMAR (2011)

    Google Scholar 

  48. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: KDD (2013)

    Google Scholar 

  49. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  50. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  51. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: ACM SIGGRAPH (1986)

    Google Scholar 

  52. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: ICCV (2015)

    Google Scholar 

  53. Skopal, T.: On fast non-metric similarity search by metric access methods. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 718–736. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_43

    Chapter  Google Scholar 

  54. Skopal, T., Bustos, B.: On nonmetric similarity search problems in complex domains. ACM Comput. Surv. (CSUR) 43(4), 1–50 (2011)

    Article  Google Scholar 

  55. Skopal, T., Lokoč, J.: NM-tree: flexible approximate similarity search in metric and non-metric spaces. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 312–325. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85654-2_30

    Chapter  Google Scholar 

  56. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Eurographics Symposium on Geometry Processing (2007)

    Google Scholar 

  57. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Eurographics Symposium on Geometry Processing (2004)

    Google Scholar 

  58. Stratasys: GrabCAD community. https://grabcad.com/library

  59. Tan, X., Chen, S., Li, J., Zhou, Z.H.: Learning non-metric partial similarity based on maximal margin criterion. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1. IEEE (2006)

    Google Scholar 

  60. Tian, Y., Fan, B., Wu, F.: L2-Net: deep learning of discriminative patch descriptor in euclidean space. In: CVPR (2017)

    Google Scholar 

  61. Trimble: 3D warehouse. https://3dwarehouse.sketchup.com/

  62. TurboSquid: TurboSquid. https://www.turbosquid.com/

  63. Wang, W., Ceylan, D., Mech, R., Neumann, U.: 3DN: 3D deformation network. In: CVPR (2019)

    Google Scholar 

  64. Weber, O., Ben-Chen, M., Gotsman, C.: Complex barycentric coordinates with applications to planar shape deformation. In: Eurographics (2009)

    Google Scholar 

  65. Whelan, T., Leutenegger, S., Salas-Moreno, R.F., Glocker, B., Davison, A.J.: ElasticFusion: dense slam without a pose graph. Robot.: Sci. Syst. (2011)

    Google Scholar 

  66. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. (2017)

    Google Scholar 

  67. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3D point cloud generation with continuous normalizing flows. In: ICCV (2019)

    Google Scholar 

  68. Yifan, W., Aigerman, N., Kim, V., Chaudhuri, S., Sorkine-Hornung, O.: Neural cages for detail-preserving 3D deformations (2019)

    Google Scholar 

  69. Yumer, E., Mitra, N.J.: Learning semantic deformation flows with 3D convolutional networks. In: ECCV (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by a Google AR/VR University Research Award, a Vannevar Bush Faculty Fellowship, a grant from the Stanford SAIL Toyota Research Center, and gifts from the Adobe Corporation and the Dassault Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikaela Angelina Uy .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 25139 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uy, M.A., Huang, J., Sung, M., Birdal, T., Guibas, L. (2020). Deformation-Aware 3D Model Embedding and Retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics