[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12349))

Included in the following conference series:

Abstract

Convolution exploits locality for efficiency at a cost of missing long range context. Self-attention has been adopted to augment CNNs with non-local interactions. Recent works prove it possible to stack self-attention layers to obtain a fully attentional network by restricting the attention to a local region. In this paper, we attempt to remove this constraint by factorizing 2D self-attention into two 1D self-attentions. This reduces computation complexity and allows performing attention within a larger or even global region. In companion, we also propose a position-sensitive self-attention design. Combining both yields our position-sensitive axial-attention layer, a novel building block that one could stack to form axial-attention models for image classification and dense prediction. We demonstrate the effectiveness of our model on four large-scale datasets. In particular, our model outperforms all existing stand-alone self-attention models on ImageNet. Our Axial-DeepLab improves 2.8% PQ over bottom-up state-of-the-art on COCO test-dev. This previous state-of-the-art is attained by our small variant that is \(3.8\times \) parameter-efficient and \(27\times \) computation-efficient. Axial-DeepLab also achieves state-of-the-art results on Mapillary Vistas and Cityscapes.

H. Wang—Work done while an intern at Google.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (2016)

    Google Scholar 

  2. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv:1409.0473 (2014)

  4. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: CVPR (2017)

    Google Scholar 

  5. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 3, 111–122 (1981)

    Article  Google Scholar 

  6. Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convolutional networks. In: ICCV (2019)

    Google Scholar 

  7. Bonde, U., Alcantarilla, P.F., Leutenegger, S.: Towards bounding-box free panoptic segmentation. arXiv:2002.07705 (2020)

  8. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)

    Google Scholar 

  9. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR (2005)

    Google Scholar 

  10. Chan, W., Jaitly, N., Le, Q., Vinyals, O.: Listen, attend and spell: a neural network for large vocabulary conversational speech recognition. In: ICASSP (2016)

    Google Scholar 

  11. Chen, L.C., et al.: Searching for efficient multi-scale architectures for dense image prediction. In: NeurIPS (2018)

    Google Scholar 

  12. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)

    Google Scholar 

  13. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE TPAMI (2017)

    Google Scholar 

  14. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587 (2017)

  15. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  16. Chen, Q., Cheng, A., He, X., Wang, P., Cheng, J.: SpatialFlow: bridging all tasks for panoptic segmentation. arXiv:1910.08787 (2019)

  17. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: A\(\hat{\,}\) 2-nets: double attention networks. In: NeurIPS (2018)

    Google Scholar 

  18. Cheng, B., et al.: Panoptic-deeplab. In: ICCV COCO + Mapillary Joint Recognition Challenge Workshop (2019)

    Google Scholar 

  19. Cheng, B., et al.: Panoptic-deeplab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: CVPR (2020)

    Google Scholar 

  20. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017)

    Google Scholar 

  21. Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based models for speech recognition. In: NeurIPS (2015)

    Google Scholar 

  22. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  23. Dai, J., et al.: Deformable convolutional networks. In: ICCV (2017)

    Google Scholar 

  24. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q., Salakhutdinov, R.: Transformer-XL: Attentive language models beyond a fixed-length context. In: ACL (2019)

    Google Scholar 

  25. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

  26. Fu, J., et al.: Dual attention network for scene segmentation. In: CVPR (2019)

    Google Scholar 

  27. Gao, H., Zhu, X., Lin, S., Dai, J.: Deformable kernels: adapting effective receptive fields for object deformation. arXiv:1910.02940 (2019)

  28. Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In: ICCV (2019)

    Google Scholar 

  29. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv:1706.02677 (2017)

  30. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  32. Ho, J., Kalchbrenner, N., Weissenborn, D., Salimans, T.: Axial attention in multidimensional transformers. arXiv:1912.12180 (2019)

  33. Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets, pp. 286–297. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-75988-8_28

    Chapter  Google Scholar 

  34. Howard, A., et al.: Searching for mobilenetv3. In: ICCV (2019)

    Google Scholar 

  35. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

  36. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: CVPR (2018)

    Google Scholar 

  37. Hu, H., Zhang, Z., Xie, Z., Lin, S.: Local relation networks for image recognition. In: ICCV (2019)

    Google Scholar 

  38. Huang, C.A., et al.: Music transformer: Generating music with long-term structure. In: ICLR (2019)

    Google Scholar 

  39. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: ICCV (2019)

    Google Scholar 

  40. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  41. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. In: BMVC (2014)

    Google Scholar 

  42. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: CVPR (2018)

    Google Scholar 

  43. Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In: ICCV (2015)

    Google Scholar 

  44. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: CVPR (2019)

    Google Scholar 

  45. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: CVPR (2019)

    Google Scholar 

  46. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  47. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  48. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: Workshop on Statistical Learning in Computer Vision, ECCV (2004)

    Google Scholar 

  49. Li, J., Raventos, A., Bhargava, A., Tagawa, T., Gaidon, A.: Learning to fuse things and stuff. arXiv:1812.01192 (2018)

  50. Li, Q., Qi, X., Torr, P.H.: Unifying training and inference for panoptic segmentation. arXiv:2001.04982 (2020)

  51. Li, X., Zhao, H., Han, L., Tong, Y., Yang, K.: GFF: gated fully fusion for semantic segmentation. arXiv:1904.01803 (2019)

  52. Li, Y., Chen, X., Zhu, Z., Xie, L., Huang, G., Du, D., Wang, X.: Attention-guided unified network for panoptic segmentation. In: CVPR (2019)

    Google Scholar 

  53. Li, Y., et al.: Neural architecture search for lightweight non-local networks. In: CVPR (2020)

    Google Scholar 

  54. Liang, J., Homayounfar, N., Ma, W.C., Xiong, Y., Hu, R., Urtasun, R.: PolyTransform: deep polygon transformer for instance segmentation. arXiv:1912.02801 (2019)

  55. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  56. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  57. Liu, C., et al.: Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In: CVPR (2019)

    Google Scholar 

  58. Liu, L., et al.: On the variance of the adaptive learning rate and beyond. In: ICLR (2020)

    Google Scholar 

  59. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR (2018)

    Google Scholar 

  60. Liu, Y., et al.: Affinity derivation and graph merge for instance segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 708–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_42

    Chapter  Google Scholar 

  61. Liu1, H., et al.: An end-to-end network for panoptic segmentation. In: CVPR (2019)

    Google Scholar 

  62. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017)

    Google Scholar 

  63. Neven, D., Brabandere, B.D., Proesmans, M., Gool, L.V.: Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In: CVPR (2019)

    Google Scholar 

  64. Papandreou, G., Kokkinos, I., Savalle, P.A.: Modeling local and global deformations in deep learning: epitomic convolution, multiple instance learning, and sliding window detection. In: CVPR (2015)

    Google Scholar 

  65. Parmar, N., Ramachandran, P., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. In: NeurIPS (2019)

    Google Scholar 

  66. Parmar, N., et al.: Image transformer. In: ICML (2018)

    Google Scholar 

  67. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. In: CVPR (2017)

    Google Scholar 

  68. Porzi, L., Bulò, S.R., Colovic, A., Kontschieder, P.: Seamless scene segmentation. In: CVPR (2019)

    Google Scholar 

  69. Qi, H., et al.: Deformable convolutional networks - COCO detection and segmentation challenge 2017 entry. In: ICCV COCO Challenge Workshop (2017)

    Google Scholar 

  70. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  71. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR (2018)

    Google Scholar 

  72. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. In: NAACL (2018)

    Google Scholar 

  73. Shen, Z., Zhang, M., Zhao, H., Yi, S., Li, H.: Efficient attention: attention with linear complexities. arXiv:1812.01243 (2018)

  74. Shensa, M.J.: The discrete wavelet transform: wedding the a trous and mallat algorithms. IEEE Trans. Signal Process. 40(10), 2464–2482 (1992)

    Article  Google Scholar 

  75. Sifre, L.: Rigid-motion scattering for image classification. Ph.D. thesis (2014)

    Google Scholar 

  76. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  77. Sofiiuk, K., Barinova, O., Konushin, A.: AdaptiS: adaptive instance selection network. In: ICCV (2019)

    Google Scholar 

  78. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  79. Uhrig, J., Rehder, E., Fröhlich, B., Franke, U., Brox, T.: Box2pix: single-shot instance segmentation by assigning pixels to object boxes. In: IEEE Intelligent Vehicles Symposium (IV) (2018)

    Google Scholar 

  80. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  81. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE TPAMI (1991)

    Google Scholar 

  82. Wang, H., Kembhavi, A., Farhadi, A., Yuille, A.L., Rastegari, M.: Elastic: improving CNNs with dynamic scaling policies. In: CVPR (2019)

    Google Scholar 

  83. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. arXiv:1908.07919 (2019)

  84. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  85. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv:1609.08144 (2016)

  86. Xie, C., Wu, Y., Maaten, L.v.d., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: CVPR (2019)

    Google Scholar 

  87. Xiong, Y., et al.: UPSNet: a unified panoptic segmentation network. In: CVPR (2019)

    Google Scholar 

  88. Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. In: ICML (2015)

    Google Scholar 

  89. Yang, T.J., et al.: DeeperLab: single-shot image parser. arXiv:1902.05093 (2019)

  90. Yang, Y., Li, H., Li, X., Zhao, Q., Wu, J., Lin, Z.: SOGNet: scene overlap graph network for panoptic segmentation. arXiv:1911.07527 (2019)

  91. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. arXiv:1805.08318 (2018)

  92. Zhang, M., Lucas, J., Ba, J., Hinton, G.E.: Lookahead optimizer: k steps forward, 1 step back. In: NeurIPS (2019)

    Google Scholar 

  93. Zhang, R.: Making convolutional networks shift-invariant again. In: ICML (2019)

    Google Scholar 

  94. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  95. Zhu, X., Cheng, D., Zhang, Z., Lin, S., Dai, J.: An empirical study of spatial attention mechanisms in deep networks. In: ICCV, pp. 6688–6697 (2019)

    Google Scholar 

  96. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: more deformable, better results. In: CVPR (2019)

    Google Scholar 

  97. Zhu, Y., et al.: Improving semantic segmentation via video propagation and label relaxation. In: CVPR (2019)

    Google Scholar 

  98. Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. In: CVPR (2019)

    Google Scholar 

  99. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)

    Google Scholar 

Download references

Acknowledgments

We thank Niki Parmar for discussion and support; Ashish Vaswani, Xuhui Jia, Raviteja Vemulapalli, Zhuoran Shen for their insightful comments and suggestions; Maxwell Collins and Blake Hechtman for technical support. This work is supported by Google Faculty Research Award and NSF 1763705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyu Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 27664 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, LC. (2020). Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58548-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58547-1

  • Online ISBN: 978-3-030-58548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics