Abstract
Convolution exploits locality for efficiency at a cost of missing long range context. Self-attention has been adopted to augment CNNs with non-local interactions. Recent works prove it possible to stack self-attention layers to obtain a fully attentional network by restricting the attention to a local region. In this paper, we attempt to remove this constraint by factorizing 2D self-attention into two 1D self-attentions. This reduces computation complexity and allows performing attention within a larger or even global region. In companion, we also propose a position-sensitive self-attention design. Combining both yields our position-sensitive axial-attention layer, a novel building block that one could stack to form axial-attention models for image classification and dense prediction. We demonstrate the effectiveness of our model on four large-scale datasets. In particular, our model outperforms all existing stand-alone self-attention models on ImageNet. Our Axial-DeepLab improves 2.8% PQ over bottom-up state-of-the-art on COCO test-dev. This previous state-of-the-art is attained by our small variant that is \(3.8\times \) parameter-efficient and \(27\times \) computation-efficient. Axial-DeepLab also achieves state-of-the-art results on Mapillary Vistas and Cityscapes.
H. Wang—Work done while an intern at Google.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (2016)
Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv:1409.0473 (2014)
Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: CVPR (2017)
Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 3, 111–122 (1981)
Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convolutional networks. In: ICCV (2019)
Bonde, U., Alcantarilla, P.F., Leutenegger, S.: Towards bounding-box free panoptic segmentation. arXiv:2002.07705 (2020)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR (2005)
Chan, W., Jaitly, N., Le, Q., Vinyals, O.: Listen, attend and spell: a neural network for large vocabulary conversational speech recognition. In: ICASSP (2016)
Chen, L.C., et al.: Searching for efficient multi-scale architectures for dense image prediction. In: NeurIPS (2018)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE TPAMI (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587 (2017)
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Chen, Q., Cheng, A., He, X., Wang, P., Cheng, J.: SpatialFlow: bridging all tasks for panoptic segmentation. arXiv:1910.08787 (2019)
Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: A\(\hat{\,}\) 2-nets: double attention networks. In: NeurIPS (2018)
Cheng, B., et al.: Panoptic-deeplab. In: ICCV COCO + Mapillary Joint Recognition Challenge Workshop (2019)
Cheng, B., et al.: Panoptic-deeplab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: CVPR (2020)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017)
Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based models for speech recognition. In: NeurIPS (2015)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)
Dai, J., et al.: Deformable convolutional networks. In: ICCV (2017)
Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q., Salakhutdinov, R.: Transformer-XL: Attentive language models beyond a fixed-length context. In: ACL (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)
Fu, J., et al.: Dual attention network for scene segmentation. In: CVPR (2019)
Gao, H., Zhu, X., Lin, S., Dai, J.: Deformable kernels: adapting effective receptive fields for object deformation. arXiv:1910.02940 (2019)
Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In: ICCV (2019)
Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv:1706.02677 (2017)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Ho, J., Kalchbrenner, N., Weissenborn, D., Salimans, T.: Axial attention in multidimensional transformers. arXiv:1912.12180 (2019)
Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets, pp. 286–297. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-75988-8_28
Howard, A., et al.: Searching for mobilenetv3. In: ICCV (2019)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)
Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: CVPR (2018)
Hu, H., Zhang, Z., Xie, Z., Lin, S.: Local relation networks for image recognition. In: ICCV (2019)
Huang, C.A., et al.: Music transformer: Generating music with long-term structure. In: ICLR (2019)
Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: ICCV (2019)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. In: BMVC (2014)
Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: CVPR (2018)
Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In: ICCV (2015)
Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: CVPR (2019)
Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: CVPR (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS (2012)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: Workshop on Statistical Learning in Computer Vision, ECCV (2004)
Li, J., Raventos, A., Bhargava, A., Tagawa, T., Gaidon, A.: Learning to fuse things and stuff. arXiv:1812.01192 (2018)
Li, Q., Qi, X., Torr, P.H.: Unifying training and inference for panoptic segmentation. arXiv:2001.04982 (2020)
Li, X., Zhao, H., Han, L., Tong, Y., Yang, K.: GFF: gated fully fusion for semantic segmentation. arXiv:1904.01803 (2019)
Li, Y., Chen, X., Zhu, Z., Xie, L., Huang, G., Du, D., Wang, X.: Attention-guided unified network for panoptic segmentation. In: CVPR (2019)
Li, Y., et al.: Neural architecture search for lightweight non-local networks. In: CVPR (2020)
Liang, J., Homayounfar, N., Ma, W.C., Xiong, Y., Hu, R., Urtasun, R.: PolyTransform: deep polygon transformer for instance segmentation. arXiv:1912.02801 (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, C., et al.: Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In: CVPR (2019)
Liu, L., et al.: On the variance of the adaptive learning rate and beyond. In: ICLR (2020)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR (2018)
Liu, Y., et al.: Affinity derivation and graph merge for instance segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 708–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_42
Liu1, H., et al.: An end-to-end network for panoptic segmentation. In: CVPR (2019)
Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017)
Neven, D., Brabandere, B.D., Proesmans, M., Gool, L.V.: Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In: CVPR (2019)
Papandreou, G., Kokkinos, I., Savalle, P.A.: Modeling local and global deformations in deep learning: epitomic convolution, multiple instance learning, and sliding window detection. In: CVPR (2015)
Parmar, N., Ramachandran, P., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. In: NeurIPS (2019)
Parmar, N., et al.: Image transformer. In: ICML (2018)
Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. In: CVPR (2017)
Porzi, L., Bulò, S.R., Colovic, A., Kontschieder, P.: Seamless scene segmentation. In: CVPR (2019)
Qi, H., et al.: Deformable convolutional networks - COCO detection and segmentation challenge 2017 entry. In: ICCV COCO Challenge Workshop (2017)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115, 211–252 (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR (2018)
Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. In: NAACL (2018)
Shen, Z., Zhang, M., Zhao, H., Yi, S., Li, H.: Efficient attention: attention with linear complexities. arXiv:1812.01243 (2018)
Shensa, M.J.: The discrete wavelet transform: wedding the a trous and mallat algorithms. IEEE Trans. Signal Process. 40(10), 2464–2482 (1992)
Sifre, L.: Rigid-motion scattering for image classification. Ph.D. thesis (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
Sofiiuk, K., Barinova, O., Konushin, A.: AdaptiS: adaptive instance selection network. In: ICCV (2019)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)
Uhrig, J., Rehder, E., Fröhlich, B., Franke, U., Brox, T.: Box2pix: single-shot instance segmentation by assigning pixels to object boxes. In: IEEE Intelligent Vehicles Symposium (IV) (2018)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE TPAMI (1991)
Wang, H., Kembhavi, A., Farhadi, A., Yuille, A.L., Rastegari, M.: Elastic: improving CNNs with dynamic scaling policies. In: CVPR (2019)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. arXiv:1908.07919 (2019)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)
Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv:1609.08144 (2016)
Xie, C., Wu, Y., Maaten, L.v.d., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: CVPR (2019)
Xiong, Y., et al.: UPSNet: a unified panoptic segmentation network. In: CVPR (2019)
Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. In: ICML (2015)
Yang, T.J., et al.: DeeperLab: single-shot image parser. arXiv:1902.05093 (2019)
Yang, Y., Li, H., Li, X., Zhao, Q., Wu, J., Lin, Z.: SOGNet: scene overlap graph network for panoptic segmentation. arXiv:1911.07527 (2019)
Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. arXiv:1805.08318 (2018)
Zhang, M., Lucas, J., Ba, J., Hinton, G.E.: Lookahead optimizer: k steps forward, 1 step back. In: NeurIPS (2019)
Zhang, R.: Making convolutional networks shift-invariant again. In: ICML (2019)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)
Zhu, X., Cheng, D., Zhang, Z., Lin, S., Dai, J.: An empirical study of spatial attention mechanisms in deep networks. In: ICCV, pp. 6688–6697 (2019)
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: more deformable, better results. In: CVPR (2019)
Zhu, Y., et al.: Improving semantic segmentation via video propagation and label relaxation. In: CVPR (2019)
Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. In: CVPR (2019)
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)
Acknowledgments
We thank Niki Parmar for discussion and support; Ashish Vaswani, Xuhui Jia, Raviteja Vemulapalli, Zhuoran Shen for their insightful comments and suggestions; Maxwell Collins and Blake Hechtman for technical support. This work is supported by Google Faculty Research Award and NSF 1763705.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, LC. (2020). Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-58548-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58547-1
Online ISBN: 978-3-030-58548-8
eBook Packages: Computer ScienceComputer Science (R0)