Abstract
Mesh autoencoders are commonly used for dimensionality reduction, sampling and mesh modeling. We propose a general-purpose DEep MEsh Autoencoder (DEMEA) which adds a novel embedded deformation layer to a graph-convolutional mesh autoencoder. The embedded deformation layer (EDL) is a differentiable deformable geometric proxy which explicitly models point displacements of non-rigid deformations in a lower dimensional space and serves as a local rigidity regularizer. DEMEA decouples the parameterization of the deformation from the final mesh resolution since the deformation is defined over a lower dimensional embedded deformation graph. We perform a large-scale study on four different datasets of deformable objects. Reasoning about the local rigidity of meshes using EDL allows us to achieve higher-quality results for highly deformable objects, compared to directly regressing vertex positions. We demonstrate multiple applications of DEMEA, including non-rigid 3D reconstruction from depth and shading cues, non-rigid surface tracking, as well as the transfer of deformations over different meshes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/
Bagautdinov, T., Wu, C., Saragih, J., Sheikh, Y., Fua, P.: Modeling facial geometry using compositional vaes (2018)
Bednařík, J., Fua, P., Salzmann, M.: Learning to reconstruct texture-less deformable surfaces. In: International Conference on 3D Vision (3DV) (2018)
Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Boscaini, D., Masci, J., Rodoià, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: International Conference on Neural Information Processing Systems (NIPS) (2016)
Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural 3D morphable models: spiral convolutional networks for 3D shape representation learning and generation. In: International Conference on Computer Vision (ICCV) (2019)
Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. CoRR abs/1312.6203 (2013)
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Scarano, V., Chiara, R.D., Erra, U. (eds.) Eurographics Italian Chapter Conference. The Eurographics Association (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: International Conference on Neural Information Processing Systems (NIPS) (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition (CVPR) (2009)
Fuentes-Jimenez, D., Casillas-Perez, D., Pizarro, D., Collins, T., Bartoli, A.: Deep Shape-from-Template: Wide-Baseline, Dense and Fast Registration and Deformable Reconstruction from a Single Image. arXiv e-prints (2018)
Gao, L., Yang, J., Qiao, Y.L., Lai, Y.K., Rosin, P.L., Xu, W., Xia, S.: Automatic unpaired shape deformation transfer. ACM Trans. Graph. (TOG) 37(6), 1–15 (2018)
Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: ACM SIGGRAPH (1997)
Golyanik, V., Shimada, S., Varanasi, K., Stricker, D.: Hdm-net: monocular non-rigid 3D reconstruction with learned deformation model. In: International Conference on Virtual Reality and Augmented Reality (EuroVR) (2018)
Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: a Papier-Mâché approach to learning 3D surface generation. In: Computer Vision and Pattern Recognition (CVPR) (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (CVPR) (2016)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)
Jack, D., et al.: Learning free-form deformations for 3D object reconstruction. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11362, pp. 317–333. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20890-5_21
Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: European Conference on Computer Vision (ECCV) (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
Kurenkov, A., et al.: Deformnet: Free-form deformation network for 3D shape reconstruction from a single image. In: Winter Conference on Applications of Computer Vision (WACV) (2018)
Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and motion reconstruction. In: ACM SIGGRAPH Asia (2009)
Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Loper, M., Mahmood, N., Black, M.J.: Mosh: motion and shape capture from sparse markers. ACM Trans. Graph. (TOG) 33, 1–13 (2014)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34, 1–16 (2015)
Malik, J., et al.: Deephps: end-to-end estimation of 3D hand pose and shape by learning from synthetic depth. In: International Conference on 3D Vision (3DV) (2018)
Masci, J., Boscaini, D., Bronstein, M.M., Vandergheynst, P.: Geodesic convolutional neural networks on riemannian manifolds. In: International Conference on Computer Vision Workshop (ICCVW) (2015)
Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: International Conference on Machine Learning (ICML) (2016)
Pumarola, A., Agudo, A., Porzi, L., Sanfeliu, A., Lepetit, V., Moreno-Noguer, F.: Geometry-aware network for non-rigid shape prediction from a single view. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: European Conference on Computer Vision (ECCV) (2018)
Shimada, S., Golyanik, V., Theobalt, C., Stricker, D.: IsMo-GAN: adversarial learning for monocular non-rigid 3D reconstruction. In: Computer Vision and Pattern Recognition Workshops (CVPRW) (2019)
Sinha, A., Unmesh, A., Huang, Q., Ramani, K.: Surfnet: generating 3D shape surfaces using deep residual networks. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Eurographics Symposium on Geometry Processing (SGP) (2007)
Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. In: ACM SIGGRAPH (2007)
Tan, Q., Gao, L., Lai, Y.K., Xia, S.: Variational autoencoders for deforming 3D mesh models. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Tan, Q., Gao, L., Lai, Y.K., Yang, J., Xia, S.: Mesh-based autoencoders for localized deformation component analysis. In: AAAI Conference on Artificial Intelligence (AAAI) (2018)
Verma, N., Boyer, E., Verbeek, J.: FeaStNet: Feature-steered graph convolutions for 3D shape analysis. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3D mesh models from single RGB images. In: European Conference on Computer Vision (ECCV) (2018)
Yi, L., Su, H., Guo, X., Guibas, L.: Syncspeccnn: synchronized spectral CNN for 3D shape segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Zollhöfer, M., et al.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. (TOG) 33, 1–12 (2014)
Acknowledgments
This work was supported by the ERC Consolidator Grant 4DReply (770784), the Max Planck Center for Visual Computing and Communications (MPC-VCC), and an Oculus research grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tretschk, E., Tewari, A., Zollhöfer, M., Golyanik, V., Theobalt, C. (2020). DEMEA: Deep Mesh Autoencoders for Non-rigidly Deforming Objects. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-58548-8_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58547-1
Online ISBN: 978-3-030-58548-8
eBook Packages: Computer ScienceComputer Science (R0)