Abstract
The automatic inspection of railways for the detection of obstacles is a fundamental activity in order to guarantee the safety of the train transport. Therefore, in this paper, we propose a vision-based framework that is able to detect obstacles during the night, when the train circulation is usually suspended, using RGB or thermal images. Acquisition cameras and external light sources are placed in the frontal part of a rail drone and a new dataset is collected. Experiments show the accuracy of the proposed approach and its suitability, in terms of computational load, to be implemented on a self-powered drone.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
References
Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 481–490 (2019)
Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 555–560 (2008)
Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39
Ballotta, D., Borghi, G., Vezzani, R., Cucchiara, R.: Head detection with depth images in the wild. In: 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS (2017)
Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)
Borghi, G., Fabbri, M., Vezzani, R., Cucchiara, R., et al.: Face-from-depth for head pose estimation on depth images. IEEE Trans. Pattern Anal. Mach. Intell. (2018)
Borghi, G., Frigieri, E., Vezzani, R., Cucchiara, R.: Hands on the wheel: a dataset for driver hand detection and tracking. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 564–570. IEEE (2018)
Borghi, G., Gasparini, R., Vezzani, R., Cucchiara, R.: Embedded recurrent network for head pose estimation in car. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1503–1508. IEEE (2017)
Borghi, G., Pini, S., Vezzani, R., Cucchiara, R.: Driver face verification with depth maps. Sensors 19(15), 3361 (2019)
Chan, F.-H., Chen, Y.-T., Xiang, Yu., Sun, M.: Anticipating accidents in dashcam videos. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 136–153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54190-7_9
Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR 2011, pp. 3449–3456. IEEE (2011)
Espino, J.C., Stanciulescu, B.: Rail extraction technique using gradient information and a priori shape model. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems, pp. 1132–1136. IEEE (2012)
Fabbri, M., Borghi, G., Lanzi, F., Vezzani, R., Calderara, S., Cucchiara, R.: Domain translation with conditional GANs: from depth to RGB face-to-face. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1355–1360. IEEE (2018)
Filev, D.P., Chinnam, R.B., Tseng, F., Baruah, P.: An industrial strength novelty detection framework for autonomous equipment monitoring and diagnostics. IEEE Trans. Ind. Inform. 6(4), 767–779 (2010)
García, J.J., et al.: Dedicated smart IR barrier for obstacle detection in railways. In: 31st Annual Conference of IEEE Industrial Electronics Society. IECON 2005, pp. 6-pp. IEEE (2005)
Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Toward supervised anomaly detection. J. Artif. Intell. Res. 46, 235–262 (2013)
Gschwandtner, M., Pree, W., Uhl, A.: Track detection for autonomous trains. In: Bebis, G., et al. (eds.) ISVC 2010. LNCS, vol. 6455, pp. 19–28. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17277-9_3
Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kumar, A.: Computer-vision-based fabric defect detection: a survey. IEEE Trans. Ind. Electron. 55(1), 348–363 (2008)
Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018)
Maire, F.: Vision based anti-collision system for rail track maintenance vehicles. In: 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 170–175. IEEE (2007)
Maire, F., Bigdeli, A.: Obstacle-free range determination for rail track maintenance vehicles. In: 2010 11th International Conference on Control Automation Robotics & Vision, pp. 2172–2178. IEEE (2010)
Mockel, S., Scherer, F., Schuster, P.F.: Multi-sensor obstacle detection on railway tracks. In: IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No. 03TH8683), pp. 42–46. IEEE (2003)
Palazzi, A., Abati, D., Solera, F., Cucchiara, R., et al.: Predicting the driver’s focus of attention: the DR (eye) VE project. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1720–1733 (2018)
Passarella, R., Tutuko, B., Prasetyo, A.P.: Design concept of train obstacle detection system in Indonesia. IJRRAS 9(3), 453–460 (2011)
Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by self-supervised prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 16–17 (2017)
Prewitt, J.M.: Object enhancement and extraction. Pict. Process. Psychopictorics 10(1), 15–19 (1970)
Punekar, N.S., Raut, A.A.: Improving railway safety with obstacle detection and tracking system using GPS-GSM model. Int. J. Sci. Eng. Res. 4(8), 282–288 (2013)
Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3379–3388 (2018)
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12
Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)
Yao, Y., Xu, M., Wang, Y., Crandall, D.J., Atkins, E.M.: Unsupervised traffic accident detection in first-person videos. arXiv preprint arXiv:1903.00618 (2019)
Zendel, O., Murschitz, M., Zeilinger, M., Steininger, D., Abbasi, S., Beleznai, C.: Railsem19: a dataset for semantic rail scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–0 (2019)
Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR 2011, pp. 3313–3320. IEEE (2011)
Zwemer, M.H., van de Wouw, D.W., Jaspers, E.G., Zinger, S., et al.: A vision-based approach for tramway rail extraction. In: Video Surveillance and Transportation Imaging Applications 2015, vol. 9407, p. 94070R. International Society for Optics and Photonics (2015)
Acknowledgements
We thank Ivan Mazzoni (RFI), Marco Plano (RFI) e Mattia Bevere (RFI) for the technical support and accurate annotations.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Gasparini, R. et al. (2020). Anomaly Detection for Vision-Based Railway Inspection. In: Bernardi, S., et al. Dependable Computing - EDCC 2020 Workshops. EDCC 2020. Communications in Computer and Information Science, vol 1279. Springer, Cham. https://doi.org/10.1007/978-3-030-58462-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-58462-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58461-0
Online ISBN: 978-3-030-58462-7
eBook Packages: Computer ScienceComputer Science (R0)