[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Anomaly Detection for Vision-Based Railway Inspection

  • Conference paper
  • First Online:
Dependable Computing - EDCC 2020 Workshops (EDCC 2020)

Abstract

The automatic inspection of railways for the detection of obstacles is a fundamental activity in order to guarantee the safety of the train transport. Therefore, in this paper, we propose a vision-based framework that is able to detect obstacles during the night, when the train circulation is usually suspended, using RGB or thermal images. Acquisition cameras and external light sources are placed in the frontal part of a rail drone and a new dataset is collected. Experiments show the accuracy of the proposed approach and its suitability, in terms of computational load, to be implemented on a self-powered drone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca800-510uc.

  2. 2.

    https://www.hella.com/truck/it/LED-LIGHT-BAR-470-Single-Twin-3950.html.

  3. 3.

    https://www.hella.com/offroad/it/Comet-200-LED-1626.html.

  4. 4.

    https://www.flir.it/products/boson.

  5. 5.

    https://www.stereolabs.com/zed.

  6. 6.

    https://developer.nvidia.com/embedded/jetson-tx2.

References

  1. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 481–490 (2019)

    Google Scholar 

  2. Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 555–560 (2008)

    Article  Google Scholar 

  3. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  4. Ballotta, D., Borghi, G., Vezzani, R., Cucchiara, R.: Head detection with depth images in the wild. In: 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS (2017)

    Google Scholar 

  5. Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Borghi, G., Fabbri, M., Vezzani, R., Cucchiara, R., et al.: Face-from-depth for head pose estimation on depth images. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  7. Borghi, G., Frigieri, E., Vezzani, R., Cucchiara, R.: Hands on the wheel: a dataset for driver hand detection and tracking. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 564–570. IEEE (2018)

    Google Scholar 

  8. Borghi, G., Gasparini, R., Vezzani, R., Cucchiara, R.: Embedded recurrent network for head pose estimation in car. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1503–1508. IEEE (2017)

    Google Scholar 

  9. Borghi, G., Pini, S., Vezzani, R., Cucchiara, R.: Driver face verification with depth maps. Sensors 19(15), 3361 (2019)

    Article  Google Scholar 

  10. Chan, F.-H., Chen, Y.-T., Xiang, Yu., Sun, M.: Anticipating accidents in dashcam videos. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 136–153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54190-7_9

    Chapter  Google Scholar 

  11. Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: CVPR 2011, pp. 3449–3456. IEEE (2011)

    Google Scholar 

  12. Espino, J.C., Stanciulescu, B.: Rail extraction technique using gradient information and a priori shape model. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems, pp. 1132–1136. IEEE (2012)

    Google Scholar 

  13. Fabbri, M., Borghi, G., Lanzi, F., Vezzani, R., Calderara, S., Cucchiara, R.: Domain translation with conditional GANs: from depth to RGB face-to-face. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1355–1360. IEEE (2018)

    Google Scholar 

  14. Filev, D.P., Chinnam, R.B., Tseng, F., Baruah, P.: An industrial strength novelty detection framework for autonomous equipment monitoring and diagnostics. IEEE Trans. Ind. Inform. 6(4), 767–779 (2010)

    Article  Google Scholar 

  15. García, J.J., et al.: Dedicated smart IR barrier for obstacle detection in railways. In: 31st Annual Conference of IEEE Industrial Electronics Society. IECON 2005, pp. 6-pp. IEEE (2005)

    Google Scholar 

  16. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Toward supervised anomaly detection. J. Artif. Intell. Res. 46, 235–262 (2013)

    Article  MathSciNet  Google Scholar 

  17. Gschwandtner, M., Pree, W., Uhl, A.: Track detection for autonomous trains. In: Bebis, G., et al. (eds.) ISVC 2010. LNCS, vol. 6455, pp. 19–28. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17277-9_3

    Chapter  Google Scholar 

  18. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Kumar, A.: Computer-vision-based fabric defect detection: a survey. IEEE Trans. Ind. Electron. 55(1), 348–363 (2008)

    Article  Google Scholar 

  21. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018)

    Google Scholar 

  22. Maire, F.: Vision based anti-collision system for rail track maintenance vehicles. In: 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 170–175. IEEE (2007)

    Google Scholar 

  23. Maire, F., Bigdeli, A.: Obstacle-free range determination for rail track maintenance vehicles. In: 2010 11th International Conference on Control Automation Robotics & Vision, pp. 2172–2178. IEEE (2010)

    Google Scholar 

  24. Mockel, S., Scherer, F., Schuster, P.F.: Multi-sensor obstacle detection on railway tracks. In: IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No. 03TH8683), pp. 42–46. IEEE (2003)

    Google Scholar 

  25. Palazzi, A., Abati, D., Solera, F., Cucchiara, R., et al.: Predicting the driver’s focus of attention: the DR (eye) VE project. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1720–1733 (2018)

    Article  Google Scholar 

  26. Passarella, R., Tutuko, B., Prasetyo, A.P.: Design concept of train obstacle detection system in Indonesia. IJRRAS 9(3), 453–460 (2011)

    Google Scholar 

  27. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by self-supervised prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 16–17 (2017)

    Google Scholar 

  28. Prewitt, J.M.: Object enhancement and extraction. Pict. Process. Psychopictorics 10(1), 15–19 (1970)

    Google Scholar 

  29. Punekar, N.S., Raut, A.A.: Improving railway safety with obstacle detection and tracking system using GPS-GSM model. Int. J. Sci. Eng. Res. 4(8), 282–288 (2013)

    Google Scholar 

  30. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3379–3388 (2018)

    Google Scholar 

  31. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  32. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  33. Yao, Y., Xu, M., Wang, Y., Crandall, D.J., Atkins, E.M.: Unsupervised traffic accident detection in first-person videos. arXiv preprint arXiv:1903.00618 (2019)

  34. Zendel, O., Murschitz, M., Zeilinger, M., Steininger, D., Abbasi, S., Beleznai, C.: Railsem19: a dataset for semantic rail scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–0 (2019)

    Google Scholar 

  35. Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR 2011, pp. 3313–3320. IEEE (2011)

    Google Scholar 

  36. Zwemer, M.H., van de Wouw, D.W., Jaspers, E.G., Zinger, S., et al.: A vision-based approach for tramway rail extraction. In: Video Surveillance and Transportation Imaging Applications 2015, vol. 9407, p. 94070R. International Society for Optics and Photonics (2015)

    Google Scholar 

Download references

Acknowledgements

We thank Ivan Mazzoni (RFI), Marco Plano (RFI) e Mattia Bevere (RFI) for the technical support and accurate annotations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Borghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gasparini, R. et al. (2020). Anomaly Detection for Vision-Based Railway Inspection. In: Bernardi, S., et al. Dependable Computing - EDCC 2020 Workshops. EDCC 2020. Communications in Computer and Information Science, vol 1279. Springer, Cham. https://doi.org/10.1007/978-3-030-58462-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58462-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58461-0

  • Online ISBN: 978-3-030-58462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics