[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evolutionary Algorithms with Self-adjusting Asymmetric Mutation

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Abstract

Evolutionary Algorithms (EAs) and other randomized search heuristics are often considered as unbiased algorithms that are invariant with respect to different transformations of the underlying search space. However, if a certain amount of domain knowledge is available the use of biased search operators in EAs becomes viable. We consider a simple (1+1) EA for binary search spaces and analyze an asymmetric mutation operator that can treat zero- and one-bits differently. This operator extends previous work by Jansen and Sudholt (ECJ 18(1), 2010) by allowing the operator asymmetry to vary according to the success rate of the algorithm. Using a self-adjusting scheme that learns an appropriate degree of asymmetry, we show improved runtime results on the class of functions OneMax\(_a\) describing the number of matching bits with a fixed target \(a\in \{0,1\}^n\).

Supported by a grant from the Danish Council for Independent Research (DFF-FNU 8021-00260B).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Doerr and Neumann [6], pp. 1–87

    Google Scholar 

  2. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the (1+(\(\lambda \), \(\lambda \))) genetic algorithm. Algorithmica 80(5), 1658–1709 (2018)

    Article  MathSciNet  Google Scholar 

  3. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimization: provable performance gains through dynamic parameter choices. In: Doerr and Neumann [6], pp. 271–321

    Google Scholar 

  4. Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation strengths for multi-valued decision variables. Algorithmica 80(5), 1732–1768 (2018)

    Article  MathSciNet  Google Scholar 

  5. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1 + \(\lambda \)) evolutionary algorithm with self-adjusting mutation rate. Algorithmica 81(2), 593–631 (2019)

    Article  MathSciNet  Google Scholar 

  6. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation - Recent Developments in Discrete Optimization. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-29414-4

    Book  MATH  Google Scholar 

  7. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. In: Proceedings of GECCO 2018, pp. 1475–1482. ACM Press (2018)

    Google Scholar 

  8. Doerr, C.: Complexity theory for discrete black-box optimization heuristics. In: Doerr and Neumann [6], pp. 133–212

    Google Scholar 

  9. Doerr, C., Wagner, M.: Sensitivity of parameter control mechanisms with respect to their initialization. In: Proceedings of PPSN 2018, pp. 360–372 (2018)

    Google Scholar 

  10. Doerr, C., Ye, F., van Rijn, S., Wang, H., Bäck, T.: Towards a theory-guided benchmarking suite for discrete black-box optimization heuristics: profiling (1+\(\lambda \)) EA variants on OneMax and LeadingOnes. In: Proceedings of GECCO 2018, pp. 951–958. ACM Press (2018)

    Google Scholar 

  11. Fajardo, M.A.H.: An empirical evaluation of success-based parameter control mechanisms for evolutionary algorithms. In: Proceedings of GECCO 2019, pp. 787–795. ACM Press (2019)

    Google Scholar 

  12. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, Hoboken (1968)

    MATH  Google Scholar 

  13. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspective. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

    Book  MATH  Google Scholar 

  14. Jansen, T., Sudholt, D.: Analysis of an asymmetric mutation operator. Evol. Comput. 18(1), 1–26 (2010)

    Article  Google Scholar 

  15. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: 2011 Proceedings of FOGA 2011, Schwarzenberg, Austria, 5–8 January 2011, Proceedings, pp. 181–192. ACM Press (2011)

    Google Scholar 

  16. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica64(4), 623–642 (2012)

    Google Scholar 

  17. Lengler, J.: Drift analysis. In: Doerr and Neumann [6], pp. 89–131

    Google Scholar 

  18. Neumann, A., Alexander, B., Neumann, F.: Evolutionary image transition using random walks. In: Correia, J., Ciesielski, V., Liapis, A. (eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 230–245. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55750-2_16

    Chapter  Google Scholar 

  19. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

    Article  MathSciNet  Google Scholar 

  20. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization - Algorithms and Their Computational Complexity. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16544-3

    Book  MATH  Google Scholar 

  21. Raidl, G.R., Koller, G., Julstrom, B.A.: Biased mutation operators for subgraph-selection problems. IEEE Trans. Evol. Comput. 10(2), 145–156 (2006)

    Article  Google Scholar 

  22. Rajabi, A., Witt, C.: Evolutionary algorithms with self-adjusting asymmetric mutation. CoRR (2020). http://arxiv.org/abs/2006.09126

  23. Rajabi, A., Witt, C.: Self-adjusting evolutionary algorithms for multimodal optimization. In: Proceedings of GECCO 2020 (2020, to appear)

    Google Scholar 

  24. Rodionova, A., Antonov, K., Buzdalova, A., Doerr, C.: Offspring population size matters when comparing evolutionary algorithms with self-adjusting mutation rates. In: Proceedings of GECCO 2019, pp. 855–863. ACM Press (2019)

    Google Scholar 

  25. Sutton, A.M.: Superpolynomial lower bounds for the (1+1) EA on some easy combinatorial problems. Algorithmica 75(3), 507–528 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Rajabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajabi, A., Witt, C. (2020). Evolutionary Algorithms with Self-adjusting Asymmetric Mutation. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics