[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

First Steps Towards a Runtime Analysis When Starting with a Good Solution

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12270))

Included in the following conference series:

Abstract

The mathematical runtime analysis of evolutionary algorithms traditionally regards the time an algorithm needs to find a solution of a certain quality when initialized with a random population. In practical applications it may be possible to guess solutions that are better than random ones. We start a mathematical runtime analysis for such situations. We observe that different algorithms profit to a very different degree from a better initialization. We also show that the optimal parameterization of the algorithm can depend strongly on the quality of the initial solutions. To overcome this difficulty, self-adjusting and randomized heavy-tailed parameter choices can be profitable. Finally, we observe a larger gap between the performance of the best evolutionary algorithm we found and the corresponding black-box complexity. This could suggest that evolutionary algorithms better exploiting good initial solutions are still to be found. These first findings stem from analyzing the performance of the \((1+1)\) evolutionary algorithm and the static, self-adjusting, and heavy-tailed \((1 + (\lambda ,\lambda ))\) GA on the OneMax benchmark, but we are optimistic that the question how to profit from good initial solutions is interesting beyond these first examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This argument can be seen as a formalization of the intuitive argument that there are \(\left( {\begin{array}{c}n\\ D\end{array}}\right) \) different solution candidates, each fitness evaluation has up to \(n+1\) different answers, hence if the runtime is less than \(\log _{n+1} \left( {\begin{array}{c}n\\ D\end{array}}\right) \) then there are two solution candidates that receive the same sequence of answers and hence are indistinguishable.

  2. 2.

    All the omitted proofs can be found in preprint  [2].

References

  1. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1268–1276. ACM (2020)

    Google Scholar 

  2. Antipov, D., Buzdalov, M., Doerr, B.: First steps towards a runtime analysis when starting with a good solution. CoRR abs/2006.12161 (2020)

    Google Scholar 

  3. Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the \({(\mu +\lambda )}\) EA optimizing OneMax. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1459–1466. ACM (2018)

    Google Scholar 

  4. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Scientific Publishing, Singapore (2011)

    MATH  Google Scholar 

  5. Buzdalov, M., Doerr, B.: Runtime analysis of the \({(1+(\lambda ,\lambda ))}\) genetic algorithm on random satisfiable 3-CNF formulas. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 1343–1350. ACM (2017). http://arxiv.org/abs/1704.04366

  6. Buzdalov, M., Doerr, B., Doerr, C., Vinokurov, D.: Fixed-target runtime analysis. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1295–1303. ACM (2020)

    Google Scholar 

  7. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the \({(1+(\lambda,\lambda ))}\) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

    Article  MathSciNet  Google Scholar 

  8. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

    Article  MathSciNet  Google Scholar 

  9. Doerr, B., Doerr, C., Neumann, F.: Fast re-optimization via structural diversity. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 233–241. ACM (2019)

    Google Scholar 

  10. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. Theoret. Comput. Sci. 801, 1–34 (2020)

    Article  MathSciNet  Google Scholar 

  11. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 2083–2090. ACM (2011)

    Google Scholar 

  12. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)

    Article  MathSciNet  Google Scholar 

  13. Doerr, B., Künnemann, M.: Optimizing linear functions with the \((1+\lambda )\) evolutionary algorithm–Different asymptotic runtimes for different instances. Theoret. Comput. Sci. 561, 3–23 (2015)

    Article  MathSciNet  Google Scholar 

  14. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784. ACM (2017)

    Google Scholar 

  15. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation-Recent Developments in Discrete Optimization. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-29414-4

    Book  MATH  Google Scholar 

  16. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  17. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theory Comput. Syst. 39, 525–544 (2006)

    Article  MathSciNet  Google Scholar 

  18. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tudományos Akad. Mat. Kutató Intézet Közleményei 8, 229–243 (1963)

    MathSciNet  MATH  Google Scholar 

  19. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127, 51–81 (2001)

    Article  MathSciNet  Google Scholar 

  20. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspective. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

    Book  MATH  Google Scholar 

  21. Jansen, T., Jong, K.A.D., Wegener, I.: On the choice of the offspring population size in evolutionary algorithms. Evol. Comput. 13, 413–440 (2005)

    Article  Google Scholar 

  22. Jansen, T., Zarges, C.: Performance analysis of randomised search heuristics operating with a fixed budget. Theoret. Comput. Sci. 545, 39–58 (2014)

    Article  MathSciNet  Google Scholar 

  23. Johannsen, D.: Random combinatorial structures and randomized search heuristics. Ph.D. thesis, Universität des Saarlandes (2010)

    Google Scholar 

  24. Liaw, C.: A hybrid genetic algorithm for the open shop scheduling problem. Eur. J. Oper. Res. 124, 28–42 (2000)

    Article  MathSciNet  Google Scholar 

  25. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern. 2, 243–284 (2009)

    Article  MathSciNet  Google Scholar 

  26. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: Parallel Problem Solving from Nature, PPSN 1992, pp. 15–26. Elsevier (1992)

    Google Scholar 

  27. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algorithms in dynamic and stochastic environments. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation. NCS, pp. 323–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_7

    Chapter  MATH  Google Scholar 

  28. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization - Algorithms and Their Computational Complexity. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16544-3

    Book  MATH  Google Scholar 

  29. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda \)) evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

    Article  MathSciNet  Google Scholar 

  30. Schieber, B., Shachnai, H., Tamir, G., Tamir, T.: A theory and algorithms for combinatorial reoptimization. Algorithmica 80, 576–607 (2018)

    Article  MathSciNet  Google Scholar 

  31. Wald, A.: Some generalizations of the theory of cumulative sums of random variables. Ann. Math. Stat. 16, 287–293 (1945)

    Article  MathSciNet  Google Scholar 

  32. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_6

    Chapter  Google Scholar 

  33. Witt, C.: Runtime analysis of the (\(\mu \) + 1) EA on simple pseudo-Boolean functions. Evol. Comput. 14, 65–86 (2006)

    Google Scholar 

  34. Zych-Pawlewicz, A.: Reoptimization of NP-hard problems. In: Böckenhauer, H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Altitudes. LNCS, vol. 11011, pp. 477–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98355-4_28

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Government of Russian Federation, grant number 08-08, and by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with Gaspard Monge Program for optimization, operations research and their interactions with data sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Antipov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antipov, D., Buzdalov, M., Doerr, B. (2020). First Steps Towards a Runtime Analysis When Starting with a Good Solution. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics