[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Initial Centroid Selection Method for an Enhanced K-means Clustering Algorithm

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12293))

Included in the following conference series:

Abstract

Clustering is an important method to discover structures and patterns in high-dimensional data and group similar ones together. K-means is one of the most popular clustering algorithms. K-means groups observations by minimizing distances between them and maximizing group distances. One of the primordial steps in this algorithm is centroid selection, in which k initial centroids are estimated either randomly, calculated, or given by the user. Existing k-means algorithms uses the ‘k-means++’ option for this selection. In this paper, we suggest an enhanced version of k-means clustering that minimize the runtime of the algorithm using ‘Ndarray’ option. Experiments have shown that if the first choice of centroids is close to the final centers, the results will be quickly found. Thus, we propose a new concept that provides one of the best choices of starting centroids that reduces the execution time by ≈80% on average for UCI, Shape and Miscellaneous datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://archive.ics.uci.edu/ml/

  2. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 1–30 (2007)

    Article  Google Scholar 

  3. Bayer, J.: Customer segmentation in the telecommunication industry. J. Database Mark. Cust. Strategy Manag. 17(3/4), 247–256 (2010)

    Article  Google Scholar 

  4. Catanese, S.A., De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Crawling Facebook for social network analysis purposes. In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics, p. 52. ACM (2011)

    Google Scholar 

  5. Gong, Y., Liu, X.: Generic text summarization using relevance measure and latent semantic analysis. In: SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 19–25 (2001)

    Google Scholar 

  6. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  7. Baswade, A.M., Nalwade, P.S.: Selection of initial centroids for k-means algorithm. Int. J. Comput. Sci. Mob. Comput. 2(7), 161–164 (2013)

    Google Scholar 

  8. Kanungo, T., Mount, D.: An efficient k-means clustering algorithm: analysis and implantation. IEEE Trans. PAMI 24, 881–892 (2004)

    Article  Google Scholar 

  9. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method. In: Symposium on Foundations of Computer Science (2006)

    Google Scholar 

  10. Gilpin, S., Davidson, I.: Incorporating SAT solvers into hierarchical clustering algorithms: an efficient and flexible approach. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 21–24 August 2011 (2011)

    Google Scholar 

  11. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 91–99. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    Google Scholar 

  12. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings of the IEEE Conference on Decision Control, San Diego, CA, pp. 761–766 (1979)

    Google Scholar 

  13. Yu, Y., Wang, Q., Kuang, J., He, J.: An on-line density-based clustering algorithm for spatial data stream. Acta Automatica Sinica 38(6), 1051–1059 (2012)

    Article  Google Scholar 

  14. Fraley, C., Raftery, A.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41(8), 578–588 (1998)

    Article  Google Scholar 

  15. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete algorithms, SODA 2007, pp. 1027–1035. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Google Scholar 

  16. Avrithis, Y., Kalantidis, Y., Anagnostopoulos, E., Emiris, I.Z.: Web-scale image clustering revisited. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 07–13 December 2015, pp. 1502–1510 (2015)

    Google Scholar 

  17. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings of the Twentieth International Conference on International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003, pp. 147–153 (2003)

    Google Scholar 

  18. Arai, K., Barakbah, A.R.: Hierarchical K-means: an algorithm for centroids initialization for k-means. Rep. Fac. Sci. Eng. Saga Univ. 36(1), 25–31 (2007)

    Google Scholar 

  19. Fahim, A.M, Salem, A.M, Torkey, F.A., Ramadan, M.A.: An efficient enhanced k-means clustering algorithm. J. Zhejiang Univ. Sci. 7, 1626–1633 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youssef Aamer , Yahya Benkaouz , Mohammed Ouzzif or Khalid Bouragba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aamer, Y., Benkaouz, Y., Ouzzif, M., Bouragba, K. (2020). Initial Centroid Selection Method for an Enhanced K-means Clustering Algorithm. In: Habachi, O., Meghdadi, V., Sabir, E., Cances, JP. (eds) Ubiquitous Networking. UNet 2019. Lecture Notes in Computer Science(), vol 12293. Springer, Cham. https://doi.org/10.1007/978-3-030-58008-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58008-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58007-0

  • Online ISBN: 978-3-030-58008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics