Abstract
The technology of CG (Computer Graphics) is indispensable in the production of animation especially for playing musical instruments. Generally, in CG animation production of musical instrument performance, recording of musical instrument performance data by a motion capture system and recording of sound source data are performed separately. Therefore, it is inevitable that there are gaps between the sound source and the video. Since high-quality sound is required for sound source data, electronic musical instruments are not used. Therefore, sound source data is recorded in WAV format, which do not include the information of onset times and frequency. Consequently, it is necessary to detect onset times of musical instruments and to stretch the intervals of the onset times in order to synchronize sound source data and video data. There is still no effective method for detecting onset times for sound source of a stringed instrument such as a violin. In this paper, we focus on a unique property that occurs during performance of a stringed instrument. We propose a method for detecting onset times in sound source of a stringed instrument based on the property. Furthermore, we evaluate the effectiveness by experiments using real sound sources.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Takano, A., Hirata, J., Miwa, H.: Method of generating computer graphics animation synchronizing motion and sound of multiple musical instruments. In: Advances in Intelligent Networking and Collaborative Systems, pp. 124–133. Springer (2018)
Ochiai, K., Kameoka, H., Sagayama, S.: Explicit beat structure modeling for non-negative matrix factorization-based multipitch analysis. In: Proceeding of ICASSP, March 2012
Patel, J.K., Gopi, E.S.: Musical notes identification using digital signal processing. Procedia Comput. Sci. 57, 876–884 (2015)
Bello, J.P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., Sandler, M.B.: A tutorial on onset detection in music signals. IEEE Trans. Speech Audio Process. 13(5), 1035–1047 (2005)
Marolt, M., Kavcic, A., Privosnik, M., Divjak, S.: On detecting note onsets in piano music. In: Proceeding of 11th IEEE Mediterranean Electrotechnical Conference, 7–9 May, Cairo, Egypt (2002)
Thickstun, J., Harchaoui, Z., Kakade, S.: Learning features of music from scratch. In: Proceedings of International Conference on Learning Representations (ICLR), 24–26 April, Toulon, France, pp. 2–7 (2017)
Lee, H.C., Lee, I.K.: Automatic synchronization of background music and motion in computer animation. Comput. Graph. Forum 24(3), 353–361 (2005)
Arfib, D., Verfaille, V.: Driving pitch-shifting and time-scaling algorithms with adaptive and gestural techniques. In: Proceeding of 6th International Conference on Digital Audio Effects. (DAFx 2003), 8–11 September, London, UK (2003)
Kawai, T., Kitaoka, N., Takeda, K.: Acoustic model training using feature vectors generated by manipulating speech parameters of real speakers. In: Proceeding of the Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC 2012), Hollywood, 3–6 December, CA, USA (2012)
Mousa, A.: Voice conversion using pitch shifting algorithm by time stretching with PSOLA and resampling. J. Electr. Eng. 61(1), 57–61 (2010)
Miyata, N., Kouchi, M., Kurihara, T., Mochimaru, M.: Modeling of human hand link structure from optical motion capture data. In: Proceeding of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 28 September–2 October, Sendai, Japan (2004)
Kugimoto, N., Miwa, H., et al.: CG animation for piano performance. In: Proceeding of ACM SIGGRAPH 2009, 3–7 August, New Orleans Louisiana, USA (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kimoto, K., Miwa, H. (2021). Method for Detecting Onset Times of Sounds of String Instrument. In: Barolli, L., Li, K., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2020. Advances in Intelligent Systems and Computing, vol 1263. Springer, Cham. https://doi.org/10.1007/978-3-030-57796-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-57796-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57795-7
Online ISBN: 978-3-030-57796-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)