[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Antipodal Radio Labelling of Full Binary Trees

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2020)

Abstract

Let G be a graph with diameter d and \(k\le d\) be a positive integer. A radio k-labelling of G is a function f that assigns to each vertex with a non-negative integer such that the following holds for all vertices uv: \(|f(u)-f(v)| \ge k + 1 - d(u,v)\), where d(uv) is the distance between u and v. The span of f is the absolute difference of the largest and smallest values in f(V). The radio number of G is the minimum span of a radio labelling admitted by G. In this article, we study radio \((d-1)\)-labelling problem for full binary trees.

Supported by National Board of Higher Mathematics (NBHM), India, with grants no. 2/48(22)/R & D II/4033, 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bantva, D., Vaidya, S., Zhou, S.: Radio number of trees. Discrete Appl. Math. 317, 110–122 (2017)

    Article  MathSciNet  Google Scholar 

  2. Chartrand, G., Erwin, D., Harary, F., Zhang, P.: Radio labelings of graphs. Bull. Inst. Comb. Appl. 33, 77–85 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Chartrand, G., Erwin, D., Zhang, P.: A graph labeling problem suggested by FM channel restrictions. Bull. Inst. Comb. Appl. 43, 43–57 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Chartrand, G. Erwin, D., Zhang, P.: Radio antipodal colorings of cycles. In: 2000 Proceedings of the Thirty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing, vol. 144, pp. 129–141, Boca Raton (2000)

    Google Scholar 

  5. Hale, W.: Frequency assignment theory and application. Proc. IEEE 68(12), 1497–1514 (1980)

    Article  Google Scholar 

  6. Juan, J.S.-T., Liu, D.D.-F.: Antipodal labelings for cycles. Ars Comb. 103, 81–96 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Liu, D.D.-F., Zhu, X.: Multi-level distance labelings for paths and cycles. SIAM J. Discrete Math. 19(3), 610–621 (2005)

    Article  MathSciNet  Google Scholar 

  8. Liu, D.D.-F.: Radio number for trees. Discrete Math. 308(7), 1153–1164 (2008)

    Article  MathSciNet  Google Scholar 

  9. Reddy Palagiri, V.S., Iyer, K.V.: Upper bounds on the radio number of some trees. Int. J. Pure Appl. Math. 71(2), 207–215 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Khennoufa, R., Togni, O.: The radio antipodal and radio numbers of the hypercube. Ars Comb. 102, 447–461 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Khennoufa, R., Togni, O.: A note on radio antipodal colourings of paths. Math. Bohem. 130(3), 277–282 (2005)

    Article  MathSciNet  Google Scholar 

  12. Saha, L., Panigrahi, P.: On the radio number of Toroidal grids. Aust. J. Combin. 55, 273–288 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Saha, L., Panigrahi, P.: A lower bound for radio \(k\)-chromatic number. Discrete Appl. Math. 192, 87–100 (2015)

    Article  MathSciNet  Google Scholar 

  14. Saha, L., Panigrahi, P.: A graph radio k-coloring algorithm. In: Arumugam, S., Smyth, W.F. (eds.) IWOCA 2012. LNCS, vol. 7643, pp. 125–129. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35926-2_15

    Chapter  Google Scholar 

  15. Sarkar, U., Adhikari, A.: On characterizing radio \(k\)-labelling problem by path covering problem. Discrete Math. 338(4), 615–620 (2015)

    Article  MathSciNet  Google Scholar 

  16. Das, S., Ghosh, S.C., Nandi, S., Sen, S.: A lower bound technique for radio \(k\)-labelling. Discrete Math. 340(5), 855–861 (2017)

    Article  MathSciNet  Google Scholar 

  17. Zhou, S.: A channel assignment problem for optical networks modelled by Cayley graphs. Theor. Comput. Sci. 310, 501–511 (2004)

    Article  MathSciNet  Google Scholar 

  18. Li, X., Mak, V., Zhou, S.: Optimal radio labellings of complete \(m\)-ary trees. Discrete Appl. Math. 158, 507–515 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxman Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S., Saha, L., Tiwary, K. (2020). Antipodal Radio Labelling of Full Binary Trees. In: Zhang, Z., Li, W., Du, DZ. (eds) Algorithmic Aspects in Information and Management. AAIM 2020. Lecture Notes in Computer Science(), vol 12290. Springer, Cham. https://doi.org/10.1007/978-3-030-57602-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57602-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57601-1

  • Online ISBN: 978-3-030-57602-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics