Abstract
Let G be a graph with diameter d and \(k\le d\) be a positive integer. A radio k-labelling of G is a function f that assigns to each vertex with a non-negative integer such that the following holds for all vertices u, v: \(|f(u)-f(v)| \ge k + 1 - d(u,v)\), where d(u, v) is the distance between u and v. The span of f is the absolute difference of the largest and smallest values in f(V). The radio number of G is the minimum span of a radio labelling admitted by G. In this article, we study radio \((d-1)\)-labelling problem for full binary trees.
Supported by National Board of Higher Mathematics (NBHM), India, with grants no. 2/48(22)/R & D II/4033, 2017.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bantva, D., Vaidya, S., Zhou, S.: Radio number of trees. Discrete Appl. Math. 317, 110–122 (2017)
Chartrand, G., Erwin, D., Harary, F., Zhang, P.: Radio labelings of graphs. Bull. Inst. Comb. Appl. 33, 77–85 (2001)
Chartrand, G., Erwin, D., Zhang, P.: A graph labeling problem suggested by FM channel restrictions. Bull. Inst. Comb. Appl. 43, 43–57 (2005)
Chartrand, G. Erwin, D., Zhang, P.: Radio antipodal colorings of cycles. In: 2000 Proceedings of the Thirty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing, vol. 144, pp. 129–141, Boca Raton (2000)
Hale, W.: Frequency assignment theory and application. Proc. IEEE 68(12), 1497–1514 (1980)
Juan, J.S.-T., Liu, D.D.-F.: Antipodal labelings for cycles. Ars Comb. 103, 81–96 (2012)
Liu, D.D.-F., Zhu, X.: Multi-level distance labelings for paths and cycles. SIAM J. Discrete Math. 19(3), 610–621 (2005)
Liu, D.D.-F.: Radio number for trees. Discrete Math. 308(7), 1153–1164 (2008)
Reddy Palagiri, V.S., Iyer, K.V.: Upper bounds on the radio number of some trees. Int. J. Pure Appl. Math. 71(2), 207–215 (2011)
Khennoufa, R., Togni, O.: The radio antipodal and radio numbers of the hypercube. Ars Comb. 102, 447–461 (2011)
Khennoufa, R., Togni, O.: A note on radio antipodal colourings of paths. Math. Bohem. 130(3), 277–282 (2005)
Saha, L., Panigrahi, P.: On the radio number of Toroidal grids. Aust. J. Combin. 55, 273–288 (2013)
Saha, L., Panigrahi, P.: A lower bound for radio \(k\)-chromatic number. Discrete Appl. Math. 192, 87–100 (2015)
Saha, L., Panigrahi, P.: A graph radio k-coloring algorithm. In: Arumugam, S., Smyth, W.F. (eds.) IWOCA 2012. LNCS, vol. 7643, pp. 125–129. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35926-2_15
Sarkar, U., Adhikari, A.: On characterizing radio \(k\)-labelling problem by path covering problem. Discrete Math. 338(4), 615–620 (2015)
Das, S., Ghosh, S.C., Nandi, S., Sen, S.: A lower bound technique for radio \(k\)-labelling. Discrete Math. 340(5), 855–861 (2017)
Zhou, S.: A channel assignment problem for optical networks modelled by Cayley graphs. Theor. Comput. Sci. 310, 501–511 (2004)
Li, X., Mak, V., Zhou, S.: Optimal radio labellings of complete \(m\)-ary trees. Discrete Appl. Math. 158, 507–515 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Das, S., Saha, L., Tiwary, K. (2020). Antipodal Radio Labelling of Full Binary Trees. In: Zhang, Z., Li, W., Du, DZ. (eds) Algorithmic Aspects in Information and Management. AAIM 2020. Lecture Notes in Computer Science(), vol 12290. Springer, Cham. https://doi.org/10.1007/978-3-030-57602-8_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-57602-8_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57601-1
Online ISBN: 978-3-030-57602-8
eBook Packages: Computer ScienceComputer Science (R0)