[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classifying Candidate Axioms via Dimensionality Reduction Techniques

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2020)

Abstract

We assess the role of similarity measures and learning methods in classifying candidate axioms for automated schema induction through kernel-based learning algorithms. The evaluation is based on (i) three different similarity measures between axioms, and (ii) two alternative dimensionality reduction techniques to check the extent to which the considered similarities allow to separate true axioms from false axioms. The result of the dimensionality reduction process is subsequently fed to several learning algorithms, comparing the accuracy of all combinations of similarity, dimensionality reduction technique, and classification method. As a result, it is observed that it is not necessary to use sophisticated semantics-based similarity measures to obtain accurate predictions, and furthermore that classification performance only marginally depends on the choice of the learning method. Our results open the way to implementing efficient surrogate models for axiom scoring to speed up ontology learning and schema induction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It should always be borne in mind that this is just a shorthand notation for the underlying OWL 2 functional-style syntax extended with the “minus” operator as explained above.

  2. 2.

    We recall that \(N(\phi ) = 1 - \varPi (\lnot \phi )\) and \(\varPi (\phi ) = 1 - N(\lnot \phi )\).

  3. 3.

    The used implementations of t-SNE and PCA in scikit-learn  [16] accept, respectively, a distance and a similarity matrix. Thus we normalized all similarities.

  4. 4.

    Code and data to replicate all experiments described in the paper is available at https://github.com/dariomalchiodi/MDAI2020.

  5. 5.

    We also repeated all experiments considering both antecedents and consequents, obtaining comparable results.

References

  1. Alsubait, T., Parsia, B., Sattler, U.: Measuring conceptual similarity in ontologies: how bad is a cheap measure? In: Description Logics, pp. 365–377 (2014)

    Google Scholar 

  2. Anderson, T.W.: On the distribution of the two-sample Cramer-von Mises criterion. Ann. Math. Stat. 33(3), 1148–1159 (1962)

    Article  MathSciNet  Google Scholar 

  3. Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 57–71. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33876-2_8

    Chapter  Google Scholar 

  4. Dubois, D., Prade, H.: Possibility Theory–An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)

    MATH  Google Scholar 

  5. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33615-7_18

    Chapter  Google Scholar 

  6. Huitzil, I., Straccia, U., Díaz-Rodríguez, N., Bobillo, F.: Datil: learning fuzzy ontology datatypes. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 854, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91476-3_9

    Chapter  Google Scholar 

  7. Lehmann, J., Völker, J. (eds.): Perspectives on Ontology Learning, Studies on the Semantic Web, vol. 18. IOS Press, Amsterdam (2014)

    Google Scholar 

  8. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  9. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  10. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)

    Article  Google Scholar 

  11. Malchiodi, D., Tettamanzi, A.G.B.: Predicting the possibilistic score of OWL axioms through modified support vector clustering. In: SAC 2018, pp. 1984–1991 (2018)

    Google Scholar 

  12. Nguyen, T.H., Tettamanzi, A.G.B.: Learning class disjointness axioms using grammatical evolution. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 278–294. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16670-0_18

    Chapter  Google Scholar 

  13. Nonato, L.G., Aupetit, M.: Multidimensional projection for visual analytics: linking techniques with distortions, tasks, and layout enrichment. IEEE Trans. Visual. Comput. Graph. 25(8), 2650–2673 (2018)

    Article  Google Scholar 

  14. Parsia, B., Motik, B., Patel-Schneider, P.: OWL 2 web ontology language structural specification and functional-style syntax, 2nd edn. W3C recommendation, W3C, December 2012. http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

  15. Pearson, K.: LIII. on lines and planes of closest fit to systems of points in spaceLIII on lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  Google Scholar 

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Sacha, D., et al.: Visual interaction with dimensionality reduction: a structured literature analysis. IEEE Trans. Vis. Comput. Graph. 23(1), 241–250 (2016)

    Article  MathSciNet  Google Scholar 

  18. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0020217

    Chapter  Google Scholar 

  19. Straccia, U., Mucci, M.: pFOIL-DL: learning (fuzzy) EL concept descriptions from crisp OWL data using a probabilistic ensemble estimation. In: SAC 2015, pp. 345–352 (2015)

    Google Scholar 

  20. Stuckenschmidt, H.: Partial matchmaking using approximate subsumption. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 22–26 July 2007, Vancouver, British Columbia, Canada, pp. 1459–1464 (2007)

    Google Scholar 

  21. Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Dynamically time-capped possibilistic testing of subclass of axioms against RDF data to enrich schemas. In: K-CAP 2015. Article No. 7 (2015)

    Google Scholar 

  22. Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Possibilistic testing of OWL axioms against RDF data. Int. J. Approximate Reasoning 91, 114–130 (2017)

    Article  MathSciNet  Google Scholar 

  23. Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Testing OWL axioms against RDF facts: a possibilistic approach. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 519–530. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13704-9_39

    Chapter  Google Scholar 

  24. Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency detection. In: I-SEMANTICS, pp. 33–40 (2012)

    Google Scholar 

  25. Yin, H.: Nonlinear dimensionality reduction and data visualization: a review. Int. J. Autom. Comput. 4(3), 294–303 (2007). https://doi.org/10.1007/s11633-007-0294-y

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was done while D. Malchiodi was visiting scientist at Inria Sophia-Antipolis/I3S CNRS Université Côte d’Azur. This work has been supported by the French government, through the 3IA Côte d’Azur “Investments in the Future” project of the Nat’l Research Agency, ref. no. ANR-19-P3IA-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Malchiodi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malchiodi, D., da Costa Pereira, C., Tettamanzi, A.G.B. (2020). Classifying Candidate Axioms via Dimensionality Reduction Techniques. In: Torra, V., Narukawa, Y., Nin, J., Agell, N. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2020. Lecture Notes in Computer Science(), vol 12256. Springer, Cham. https://doi.org/10.1007/978-3-030-57524-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57524-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57523-6

  • Online ISBN: 978-3-030-57524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics