Abstract
We assess the role of similarity measures and learning methods in classifying candidate axioms for automated schema induction through kernel-based learning algorithms. The evaluation is based on (i) three different similarity measures between axioms, and (ii) two alternative dimensionality reduction techniques to check the extent to which the considered similarities allow to separate true axioms from false axioms. The result of the dimensionality reduction process is subsequently fed to several learning algorithms, comparing the accuracy of all combinations of similarity, dimensionality reduction technique, and classification method. As a result, it is observed that it is not necessary to use sophisticated semantics-based similarity measures to obtain accurate predictions, and furthermore that classification performance only marginally depends on the choice of the learning method. Our results open the way to implementing efficient surrogate models for axiom scoring to speed up ontology learning and schema induction methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It should always be borne in mind that this is just a shorthand notation for the underlying OWL 2 functional-style syntax extended with the “minus” operator as explained above.
- 2.
We recall that \(N(\phi ) = 1 - \varPi (\lnot \phi )\) and \(\varPi (\phi ) = 1 - N(\lnot \phi )\).
- 3.
The used implementations of t-SNE and PCA in scikit-learn [16] accept, respectively, a distance and a similarity matrix. Thus we normalized all similarities.
- 4.
Code and data to replicate all experiments described in the paper is available at https://github.com/dariomalchiodi/MDAI2020.
- 5.
We also repeated all experiments considering both antecedents and consequents, obtaining comparable results.
References
Alsubait, T., Parsia, B., Sattler, U.: Measuring conceptual similarity in ontologies: how bad is a cheap measure? In: Description Logics, pp. 365–377 (2014)
Anderson, T.W.: On the distribution of the two-sample Cramer-von Mises criterion. Ann. Math. Stat. 33(3), 1148–1159 (1962)
Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 57–71. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33876-2_8
Dubois, D., Prade, H.: Possibility Theory–An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)
Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33615-7_18
Huitzil, I., Straccia, U., Díaz-Rodríguez, N., Bobillo, F.: Datil: learning fuzzy ontology datatypes. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 854, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91476-3_9
Lehmann, J., Völker, J. (eds.): Perspectives on Ontology Learning, Studies on the Semantic Web, vol. 18. IOS Press, Amsterdam (2014)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)
Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)
Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)
Malchiodi, D., Tettamanzi, A.G.B.: Predicting the possibilistic score of OWL axioms through modified support vector clustering. In: SAC 2018, pp. 1984–1991 (2018)
Nguyen, T.H., Tettamanzi, A.G.B.: Learning class disjointness axioms using grammatical evolution. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 278–294. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16670-0_18
Nonato, L.G., Aupetit, M.: Multidimensional projection for visual analytics: linking techniques with distortions, tasks, and layout enrichment. IEEE Trans. Visual. Comput. Graph. 25(8), 2650–2673 (2018)
Parsia, B., Motik, B., Patel-Schneider, P.: OWL 2 web ontology language structural specification and functional-style syntax, 2nd edn. W3C recommendation, W3C, December 2012. http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
Pearson, K.: LIII. on lines and planes of closest fit to systems of points in spaceLIII on lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Sacha, D., et al.: Visual interaction with dimensionality reduction: a structured literature analysis. IEEE Trans. Vis. Comput. Graph. 23(1), 241–250 (2016)
Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0020217
Straccia, U., Mucci, M.: pFOIL-DL: learning (fuzzy) EL concept descriptions from crisp OWL data using a probabilistic ensemble estimation. In: SAC 2015, pp. 345–352 (2015)
Stuckenschmidt, H.: Partial matchmaking using approximate subsumption. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 22–26 July 2007, Vancouver, British Columbia, Canada, pp. 1459–1464 (2007)
Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Dynamically time-capped possibilistic testing of subclass of axioms against RDF data to enrich schemas. In: K-CAP 2015. Article No. 7 (2015)
Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Possibilistic testing of OWL axioms against RDF data. Int. J. Approximate Reasoning 91, 114–130 (2017)
Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Testing OWL axioms against RDF facts: a possibilistic approach. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 519–530. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13704-9_39
Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency detection. In: I-SEMANTICS, pp. 33–40 (2012)
Yin, H.: Nonlinear dimensionality reduction and data visualization: a review. Int. J. Autom. Comput. 4(3), 294–303 (2007). https://doi.org/10.1007/s11633-007-0294-y
Acknowledgments
Part of this work was done while D. Malchiodi was visiting scientist at Inria Sophia-Antipolis/I3S CNRS Université Côte d’Azur. This work has been supported by the French government, through the 3IA Côte d’Azur “Investments in the Future” project of the Nat’l Research Agency, ref. no. ANR-19-P3IA-0002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Malchiodi, D., da Costa Pereira, C., Tettamanzi, A.G.B. (2020). Classifying Candidate Axioms via Dimensionality Reduction Techniques. In: Torra, V., Narukawa, Y., Nin, J., Agell, N. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2020. Lecture Notes in Computer Science(), vol 12256. Springer, Cham. https://doi.org/10.1007/978-3-030-57524-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-57524-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57523-6
Online ISBN: 978-3-030-57524-3
eBook Packages: Computer ScienceComputer Science (R0)