[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PyTorch

  • Chapter
  • First Online:
Programming with TensorFlow

Abstract

PyTorch is a library for Python programs that encourages deep learning programs. With this receptiveness and convenience found in (Deep Learning for Computer Vision: Expert techniques to train advanced neural networks using TensorFlow and Keras. [Authors: RajalingappaaShanmugamani]), PyTorch makes it useful in developing deep neural networks. It has an expansive scope and is applied for various applications. As Python is for programming, PyTorch is both a magnificent prologue to profound learning just as an instrument usable in proficient real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deep Learning for Computer Vision: Expert techniques to train advanced neural networks using TensorFlow and Keras. [Authors: RajalingappaaShanmugamani]

    Google Scholar 

  2. Deep Learning in Python: Master Data Science and Machine Learning with Modern Neural Networks written in Python, Theano, and TensorFlow. [Authors: LazyProgrammer]

    Google Scholar 

  3. Deep learning quick reference: useful hacks for training and optimizing deep neural networks with TensorFlow and Keras. [Authors: Bernico, Mike]

    Google Scholar 

  4. Deep Learning with TensorFlow: Explore neural networks with Python [Authors: Giancarlo Zaccone, Md. RezaulKarim, Ahmed Menshawy]

    Google Scholar 

  5. Erdmann M, Glombitza J, Walz D. A deep learning-based reconstruction of cosmic ray-induced air showers. AstropartPhys 2018;97:46–53. doi:https://doi.org/10.1016/j.astropartphys.2017.10.006, URL http://www.sciencedirect.com/science/article/pii/S0927650517302219.

  6. Feng Q, Lin TTY. The analysis of VERITAS muon images using convolutional neural networks, in: Proceedings of the International Astronomical Union, vol. 12, 2016.

    Google Scholar 

  7. Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT Press, Cambridge

    MATH  Google Scholar 

  8. Grandison T, Sloman M (2000) A survey of trust in internet applications. IEEE CommunSurv Tutor 3(4):2–16

    Article  Google Scholar 

  9. Guo X, Ipek E, Soyata T (2010) Resistive computation: avoiding the power wall with low-leakage, STT-MRAM based computing. In: ACM SIGARCH computer architecture news, vol 38. ACM, pp 371–382

    Google Scholar 

  10. Hands-on unsupervised learning with Python: implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more [Authors: Bonaccorso, Giuseppe]

    Google Scholar 

  11. Holch TL, Shilon I, Büchele M, Fischer T, Funk S, Groeger N, Jankowsky D, Lohse T, Schwanke U, Wagner P. Probing convolutional neural networks forevent reconstruction in γ -ray astronomy with Cherenkov telescopes, in:PoS ICRC2017, The Fluorescence detector Array of Single-pixel Telescopes:Contributions to the 35th International Cosmic Ray Conference (ICRC2017), p. 795, https://doi.org/10.22323/1.301.0795, arXiv:1711.06298.

  12. Huennefeld M. Deep learning in physics exemplified by the reconstruction of muon-neutrino events in IceCube, in: PoS ICRC2017, The Fluorescence detector Array of Single-pixel Telescopes: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017), p. 1057, https://doi.org/10.22323/1.301.1057.

  13. Hurst S (1969) An introduction to threshold logic: a survey of present theory and practice. Radio Electron Eng 37(6):339–351

    Article  Google Scholar 

  14. Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras. [Authors: SantanuPattanayak]

    Google Scholar 

  15. Internet of Things for Industry 4.0, EAI, Springer, Editors, G. R. Kanagachidambaresan, R. Anand, E. Balasubramanian and V. Mahima, Springer.

    Google Scholar 

  16. Jeong H, Shi L (2018) Memristor devices for neural networks. J Phys D: ApplPhys 52(2):023003

    Article  Google Scholar 

  17. Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using mem-ristor networks: a survey. IEEE Trans Emerg Top ComputIntell 2(5):380–395. doi:https://doi.org/10.1109/TETCI.2018.2838124

    Article  Google Scholar 

  18. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44. doi:https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  19. Mangano S, Delgado C, Bernardos M, Lallena M, Vzquez JJR. Extracting gamma-ray information from images with convolutional neural networkmethods on simulated cherenkov telescope array data. In: ANNPR 2018. LNAI, vol. 11081, 2018, p. 243–54. doi:https://doi.org/10.1007/978-3-319-99978-4, arXiv:1810.00592.

  20. Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras. [Author: Armando Fandango]

    Google Scholar 

  21. Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-Vision Projects Using Python, Keras&TensorFlow [Authors: AnirudhKoul, Siddha Ganju, MeherKasam]

    Google Scholar 

  22. Python Deep Learning: Exploring deep learning techniques, neural network architectures and GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater, GianmarioSpacagna, Peter Roelants, Valentino Zocca]

    Google Scholar 

  23. Shilon I, Kraus M, Büchele M, Egberts K, Fischer T, HolchTL, Lohse T, Schwanke U, Steppa C, Funk S. Application of deep learning methods to analysis of imaging atmospheric cherenkov telescopes data. AstropartPhys 2019; 105: 44–53. doi:https://doi.org/10.1016/j.astropartphys.2018.10.003, URL http://www.sciencedirect.com/science/article/pii/S0927650518301178

  24. TensorFlow 1.x Deep Learning Cookbook: Over 90 unique recipes to solve artificial-intelligence driven problems with Python. [Authors: Antonio Gulli, AmitaKapoor]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imambi, S., Prakash, K.B., Kanagachidambaresan, G.R. (2021). PyTorch. In: Prakash, K.B., Kanagachidambaresan, G.R. (eds) Programming with TensorFlow. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-57077-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57077-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57076-7

  • Online ISBN: 978-3-030-57077-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics