Abstract
We investigate the feasibility of Bayesian parameter inference for chemical reaction networks described in the low copy number regime. Here stochastic models are often favorable implying that the Bayesian approach becomes natural. Our discussion circles around a concrete oscillating system describing a circadian rhythm, and we ask if its parameters can be inferred from observational data. The main challenge is the lack of analytic likelihood and we circumvent this through the use of a synthetic likelihood based on summarizing statistics. We are particularly interested in the robustness and confidence of the inference procedure and therefore estimates a priori as well as a posteriori the information content available in the data. Our all-synthetic experiments are successful but also point out several challenges when it comes to real data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
N. Barkai and S. Leibler. Circadian clocks limited by noise. Nature, 403: 267–268, 2000. https://doi.org/10.1038/35002258.
W. J. Blake, M. Kærn, C. R. Cantor, and J. J. Collins. Noise in eukaryotic gene expression. Nature, 422 (6932): 633–637, 2003.
P. Dupuis, M. A. Katsoulakis, Y. Pantazis, and P. Plecháč. Path-space information bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics. SIAM/ASA Journal on Uncertainty Quantification, 4 (1): 80–111, 2016.
S. Engblom. Galerkin spectral method applied to the chemical master equation. Commun. Comput. Phys., 5 (5): 871–896, 2009.
S. Engblom. Spectral approximation of solutions to the chemical master equation. J. Comput. Appl. Math., 229 (1): 208–221, 2009. https://doi.org/10.1016/j.cam.2008.10.029.
S. Engblom and V. Sunkara. Preconditioned Metropolis sampling as a strategy to improve efficiency in posterior exploration. IFAC-PapersOnLine, 49 (26): 89–94, 2016. https://doi.org/10.1016/j.ifacol.2016.12.108. Foundations of Systems Biology in Engineering, FOSBE 2016.
S. Engblom, R. Eriksson, and S. Widgren: Bayesian epidemiological modeling over high-resolution network data. Epidemics, 32, 2020. https://doi.org/10.1016/j.epidem.2020.100399.
H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli, 7 (2): 223–242, 2001. https://doi.org/10.2307/3318737.
M. A. Katsoulakis and P. Vilanova. Data-driven, variational model reduction of high-dimensional reaction networks. Journal of Computational Physics, 401: 108997, 2020. ISSN 0021–9991. https://doi.org/10.1016/j.jcp.2019.108997.
B. N. Kholodenko. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. European Journal of Biochemistry, 267 (6): 1583–1588, 2000.
M. Komorowski, M. J. Costa, D. A. Rand, and M. P. H. Stumpf. Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proceedings of the National Academy of Sciences, 108 (21): 8645–8650, 2011. ISSN 0027-8424. https://doi.org/10.1073/pnas.1015814108.
B. D. MacArthur, A. Ma’ayan, and I. R. Lemischka. Systems biology of stem cell fate and cellular reprogramming. Nature Reviews Molecular Cell Biology, 10 (10): 672–681, 2009.
Y. Pantazis, M. Katsoulakis, and D. Vlachos. Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory. BMC Bioinformatics, 14 (1): 311, 2013. ISSN 1471-2105. https://doi.org/10.1186/1471-2105-14-311.
J. Paulsson, O. G. Berg, and M. Ehrenberg. Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. USA, 97 (13): 7148–7153, 2000. https://doi.org/10.1073/pnas.110057697.
Y. Togashi and K. Kaneko. Molecular discreteness in reaction-diffusion systems yields steady states not seen in the continuum limit. Phys. Rev. E, 70 (2): 020901–1, 2004. https://doi.org/10.1103/PhysRevE.70.020901.
J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler. Mechanism of noise-resistance in genetic oscillators. Proc. Natl. Acad. Sci. USA, 99: 5988–5992, 2002. https://doi.org/10.1073/pnas.092133899.
S. N. Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466 (7310): 1102–1104, 2010. https://doi.org/10.1038/nature09319.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Engblom, S., Eriksson, R., Vilanova, P. (2021). Towards Confident Bayesian Parameter Estimation in Stochastic Chemical Kinetics. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-55874-1_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55873-4
Online ISBN: 978-3-030-55874-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)