[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Confident Bayesian Parameter Estimation in Stochastic Chemical Kinetics

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

  • 1960 Accesses

Abstract

We investigate the feasibility of Bayesian parameter inference for chemical reaction networks described in the low copy number regime. Here stochastic models are often favorable implying that the Bayesian approach becomes natural. Our discussion circles around a concrete oscillating system describing a circadian rhythm, and we ask if its parameters can be inferred from observational data. The main challenge is the lack of analytic likelihood and we circumvent this through the use of a synthetic likelihood based on summarizing statistics. We are particularly interested in the robustness and confidence of the inference procedure and therefore estimates a priori as well as a posteriori the information content available in the data. Our all-synthetic experiments are successful but also point out several challenges when it comes to real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 239.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Barkai and S. Leibler. Circadian clocks limited by noise. Nature, 403: 267–268, 2000. https://doi.org/10.1038/35002258.

    Article  Google Scholar 

  2. W. J. Blake, M. Kærn, C. R. Cantor, and J. J. Collins. Noise in eukaryotic gene expression. Nature, 422 (6932): 633–637, 2003.

    Article  Google Scholar 

  3. P. Dupuis, M. A. Katsoulakis, Y. Pantazis, and P. Plecháč. Path-space information bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics. SIAM/ASA Journal on Uncertainty Quantification, 4 (1): 80–111, 2016.

    Article  MathSciNet  Google Scholar 

  4. S. Engblom. Galerkin spectral method applied to the chemical master equation. Commun. Comput. Phys., 5 (5): 871–896, 2009.

    MathSciNet  MATH  Google Scholar 

  5. S. Engblom. Spectral approximation of solutions to the chemical master equation. J. Comput. Appl. Math., 229 (1): 208–221, 2009. https://doi.org/10.1016/j.cam.2008.10.029.

    Article  MathSciNet  Google Scholar 

  6. S. Engblom and V. Sunkara. Preconditioned Metropolis sampling as a strategy to improve efficiency in posterior exploration. IFAC-PapersOnLine, 49 (26): 89–94, 2016. https://doi.org/10.1016/j.ifacol.2016.12.108. Foundations of Systems Biology in Engineering, FOSBE 2016.

  7. S. Engblom, R. Eriksson, and S. Widgren: Bayesian epidemiological modeling over high-resolution network data. Epidemics, 32, 2020. https://doi.org/10.1016/j.epidem.2020.100399.

  8. H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli, 7 (2): 223–242, 2001. https://doi.org/10.2307/3318737.

    Article  MathSciNet  Google Scholar 

  9. M. A. Katsoulakis and P. Vilanova. Data-driven, variational model reduction of high-dimensional reaction networks. Journal of Computational Physics, 401: 108997, 2020. ISSN 0021–9991. https://doi.org/10.1016/j.jcp.2019.108997.

    Article  MathSciNet  Google Scholar 

  10. B. N. Kholodenko. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. European Journal of Biochemistry, 267 (6): 1583–1588, 2000.

    Article  Google Scholar 

  11. M. Komorowski, M. J. Costa, D. A. Rand, and M. P. H. Stumpf. Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proceedings of the National Academy of Sciences, 108 (21): 8645–8650, 2011. ISSN 0027-8424. https://doi.org/10.1073/pnas.1015814108.

    Article  Google Scholar 

  12. B. D. MacArthur, A. Ma’ayan, and I. R. Lemischka. Systems biology of stem cell fate and cellular reprogramming. Nature Reviews Molecular Cell Biology, 10 (10): 672–681, 2009.

    Article  Google Scholar 

  13. Y. Pantazis, M. Katsoulakis, and D. Vlachos. Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory. BMC Bioinformatics, 14 (1): 311, 2013. ISSN 1471-2105. https://doi.org/10.1186/1471-2105-14-311.

  14. J. Paulsson, O. G. Berg, and M. Ehrenberg. Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. USA, 97 (13): 7148–7153, 2000. https://doi.org/10.1073/pnas.110057697.

    Article  Google Scholar 

  15. Y. Togashi and K. Kaneko. Molecular discreteness in reaction-diffusion systems yields steady states not seen in the continuum limit. Phys. Rev. E, 70 (2): 020901–1, 2004. https://doi.org/10.1103/PhysRevE.70.020901.

    Article  Google Scholar 

  16. J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler. Mechanism of noise-resistance in genetic oscillators. Proc. Natl. Acad. Sci. USA, 99: 5988–5992, 2002. https://doi.org/10.1073/pnas.092133899.

    Article  Google Scholar 

  17. S. N. Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466 (7310): 1102–1104, 2010. https://doi.org/10.1038/nature09319.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Engblom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Engblom, S., Eriksson, R., Vilanova, P. (2021). Towards Confident Bayesian Parameter Estimation in Stochastic Chemical Kinetics. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_36

Download citation

Publish with us

Policies and ethics