[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Study on an Adaptive Finite Element Solver for the Cahn–Hilliard Equation

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

Abstract

In this work we present an adaptive matrix-free finite element solver for the Cahn–Hilliard equation modelling phase separation in electrode particles of lithium ion batteries during lithium insertion. We employ an error controlled variable-step, variable-order time integrator and a regularity estimator for the adaptive mesh refinement. In particular, we propose a matrix-free applicable preconditioner. Numerical experiments demonstrate the importance of adaptive methods and show for our preconditioner practically no dependence of the number of GMRES iterations on the mesh size, even for locally refined meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 239.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 299.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. John Wiley, New York (2000)

    Book  Google Scholar 

  2. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Software 33(4), 24/1–24/27 (2007)

    Google Scholar 

  3. Bosch, J., Stoll, M.: Preconditioning for vector-valued Cahn–Hilliard equations. SIAM J. Sci. Comput. 37(5), S216–S243 (2015)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.C., Diegel, A.E., Sung, L.: A robust solver for a mixed finite element method for the Cahn–Hilliard equation. J. Sci. Comput. 77(2), 1234–1249 (2018)

    Article  MathSciNet  Google Scholar 

  5. Castelli, G.F., Dörfler, W.: The numerical study of a microscale model for lithium-ion batteries. Comput. Math. Appl. 77(6), 1527–1540 (2019)

    Article  MathSciNet  Google Scholar 

  6. Huttin, M., Kamlah, M.: Phase-field modeling of stress generation in electrode particles of lithium ion batteries. Appl. Phys. Lett. 101(13), 133902–1–133902–4 (2012)

    Google Scholar 

  7. Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element operator application. Comput. Fluids 63, 135–147 (2012)

    Article  MathSciNet  Google Scholar 

  8. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  Google Scholar 

  9. Shampine, L.F., Reichelt, M.W., Kierzenka, J.A.: Solving index-1 DAEs in MATLAB and Simulink. SIAM Rev. 41(3), 538–552 (1999)

    Article  MathSciNet  Google Scholar 

  10. The MathWorks Inc.: MATLAB. http://www.mathworks.com

  11. Walk, A., Huttin, M., Kamlah, M.: Comparison of a phase-field model for intercalation induced stresses in electrode particles of lithium ion batteries for small and finite deformation theory. Eur. J. Mech. A Solids 48, 74–82 (2014)

    Article  MathSciNet  Google Scholar 

  12. Xu, B., Zhao, Y., Stein, P.: Phase field modeling of electrochemically induced fracture in Li-ion battery with large deformation and phase segregation. GAMM-Mitt. 39(1), 92–109 (2016)

    Article  MathSciNet  Google Scholar 

  13. Zhang, T., Kamlah, M.: Sodium ion batteries particles: Phase-field modeling with coupling of Cahn–Hilliard equation and finite deformation elasticity. J. Electrochem. Soc. 165(10), A1997–A2007 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Kamlah and T. Zhang for discussions about the model equations. G.F. Castelli acknowledges financial support by the German Research Foundation (DFG) through RTG 2218 SiMET—Simulation of mechano-electro-thermal processes in lithium-ion batteries, project number 281041241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fabian Castelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castelli, G.F., Dörfler, W. (2021). Study on an Adaptive Finite Element Solver for the Cahn–Hilliard Equation. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_23

Download citation

Publish with us

Policies and ethics