Abstract
In this work we present an adaptive matrix-free finite element solver for the Cahn–Hilliard equation modelling phase separation in electrode particles of lithium ion batteries during lithium insertion. We employ an error controlled variable-step, variable-order time integrator and a regularity estimator for the adaptive mesh refinement. In particular, we propose a matrix-free applicable preconditioner. Numerical experiments demonstrate the importance of adaptive methods and show for our preconditioner practically no dependence of the number of GMRES iterations on the mesh size, even for locally refined meshes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. John Wiley, New York (2000)
Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Software 33(4), 24/1–24/27 (2007)
Bosch, J., Stoll, M.: Preconditioning for vector-valued Cahn–Hilliard equations. SIAM J. Sci. Comput. 37(5), S216–S243 (2015)
Brenner, S.C., Diegel, A.E., Sung, L.: A robust solver for a mixed finite element method for the Cahn–Hilliard equation. J. Sci. Comput. 77(2), 1234–1249 (2018)
Castelli, G.F., Dörfler, W.: The numerical study of a microscale model for lithium-ion batteries. Comput. Math. Appl. 77(6), 1527–1540 (2019)
Huttin, M., Kamlah, M.: Phase-field modeling of stress generation in electrode particles of lithium ion batteries. Appl. Phys. Lett. 101(13), 133902–1–133902–4 (2012)
Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element operator application. Comput. Fluids 63, 135–147 (2012)
Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)
Shampine, L.F., Reichelt, M.W., Kierzenka, J.A.: Solving index-1 DAEs in MATLAB and Simulink. SIAM Rev. 41(3), 538–552 (1999)
The MathWorks Inc.: MATLAB. http://www.mathworks.com
Walk, A., Huttin, M., Kamlah, M.: Comparison of a phase-field model for intercalation induced stresses in electrode particles of lithium ion batteries for small and finite deformation theory. Eur. J. Mech. A Solids 48, 74–82 (2014)
Xu, B., Zhao, Y., Stein, P.: Phase field modeling of electrochemically induced fracture in Li-ion battery with large deformation and phase segregation. GAMM-Mitt. 39(1), 92–109 (2016)
Zhang, T., Kamlah, M.: Sodium ion batteries particles: Phase-field modeling with coupling of Cahn–Hilliard equation and finite deformation elasticity. J. Electrochem. Soc. 165(10), A1997–A2007 (2018)
Acknowledgements
The authors thank M. Kamlah and T. Zhang for discussions about the model equations. G.F. Castelli acknowledges financial support by the German Research Foundation (DFG) through RTG 2218 SiMET—Simulation of mechano-electro-thermal processes in lithium-ion batteries, project number 281041241.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Castelli, G.F., Dörfler, W. (2021). Study on an Adaptive Finite Element Solver for the Cahn–Hilliard Equation. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-55874-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55873-4
Online ISBN: 978-3-030-55874-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)