[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Alzheimer Disease Prediction Model Based on Decision Fusion of CNN-BiLSTM Deep Neural Networks

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1252))

Included in the following conference series:

Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder. Early prediction of Alzheimer’s progression is a crucial process for the patients and their families. As a chronic disease, AD data are multimodal and time series in nature. Building a deep learning model to optimize multi-objective cost function produces a more stable and accurate model. In this paper, we propose a multimodal multitask deep learning model for AD progression detection based five time series modalities and a collection of static data. The model predicts AD progression as a multi-class classification task and four critical cognitive scores as regression tasks. The experimental results show that our model is medically intuitive, more accurate, and more stable than the state-of-the-art studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberdi, A., Aztiria, A., Basarab, A.: On the early diagnosis of Alzheimer’s disease from multimodal signals: a survey. Artif. Intell. Med. 71, 1–29 (2016). https://doi.org/10.1016/j.artmed.2016.06.003

    Article  Google Scholar 

  2. Li, H., Habes, M., Wolk, D.A., Fan, Y.: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal MRI 1–12 (2019). https://doi.org/10.1016/j.jalz.2019.02.007

  3. Ramírez, J., Górriz, J.M., Ortiz, A., Martínez-Murcia, F.J., Segovia, F., Salas-Gonzalez, D., Castillo-Barnes, D., Illán, I.A., Puntonet, C.G.: Ensemble of random forests one vs. rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares. J. Neurosci. Methods 302, 47–57 (2018). https://doi.org/10.1016/j.jneumeth.2017.12.005

  4. Yao, D., Calhoun, V.D., Fu, Z., Du, Y., Sui, J.: An ensemble learning system for a 4-way classification of Alzheimer’s disease and mild cognitive impairment. J. Neurosci. Methods 302, 75–81 (2018). https://doi.org/10.1016/j.jneumeth.2018.03.008

    Article  Google Scholar 

  5. Bucholc, M., Ding, X., Wang, H., Glass, D.H., Wang, H., Prasad, G., Maguire, L.P., Bjourson, A.J., McClean, P.L., Todd, S., Finn, D.P., Wong-Lin, K.F.: A practical computerized decision support system for predicting the severity of Alzheimer’s disease of an individual. Expert Syst. Appl. 130, 157–171 (2019). https://doi.org/10.1016/j.eswa.2019.04.022

    Article  Google Scholar 

  6. Polikar, R., Topalis, A., Parikh, D., Green, D., Frymiare, J., Kounios, J., Clark, C.M.: An ensemble based data fusion approach for early diagnosis of Alzheimer’s disease. Inf. Fusion. 9, 83–95 (2008). https://doi.org/10.1016/j.inffus.2006.09.003

    Article  Google Scholar 

  7. Liu, M., Zhang, J., Adeli, E., Shen, D.: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans. Biomed. Eng. 1 (2018). https://doi.org/10.1109/TBME.2018.2869989

  8. Ruiz, E., Ramírez, J., Górriz, J.M., Casillas, J.: Alzheimer’s disease computer-aided diagnosis: histogram-based analysis of regional MRI volumes for feature selection and classification. J. Alzheimer’s Dis. 65, 819–842 (2018). https://doi.org/10.3233/JAD-170514

    Article  Google Scholar 

  9. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56, 766–781 (2011). https://doi.org/10.1016/j.neuroimage.2010.06.013

    Article  Google Scholar 

  10. Wang, T., Qiu, R.G., Yu, M.: Predictive modeling of the progression of Alzheimer ’ s disease with recurrent neural networks. Sci. Rep. 1–12 (2018). https://doi.org/10.1038/s41598-018-27337-w

  11. Donnelly-Kehoe, P.A., Pascariello, G.O., Gómez, J.C.: Looking for Alzheimer’s disease morphometric signatures using machine learning techniques. J. Neurosci. Methods 302, 24–34 (2018). https://doi.org/10.1016/j.jneumeth.2017.11.013

    Article  Google Scholar 

  12. Qiu, S., Chang, G.H., Panagia, M., Gopal, D.M., Au, R., Kolachalama, V.B.: Fusion of deep learning models of MRI scans, mini–mental state examination, and logical memory test enhances diagnosis of mild cognitive impairment. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 10, 737–749 (2018). https://doi.org/10.1016/j.dadm.2018.08.013

    Article  Google Scholar 

  13. Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015). https://doi.org/10.1016/j.neuroimage.2014.10.002

    Article  Google Scholar 

  14. Liu, F., Zhou, L., Shen, C., Yin, J.: Multiple kernel learning in the primal for multimodal Alzheimer’s disease classification. IEEE J. Biomed. Heal. Inform. 18, 984–990 (2013). https://doi.org/10.1109/jbhi.2013.2285378

    Article  Google Scholar 

  15. Duchesne, S., Caroli, A., Geroldi, C., Collins, D.L., Frisoni, G.B.: Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage 47, 1363–1370 (2009). https://doi.org/10.1016/j.neuroimage.2009.04.023

    Article  Google Scholar 

  16. Harutyunyan, H., Khachatrian, H., Kale, D.C., Ver Steeg, G., Galstyan, A.: Multitask learning and benchmarking with clinical time series data. Sci. data. 6, 96 (2019). https://doi.org/10.1038/s41597-019-0103-9

    Article  Google Scholar 

  17. Lu, D., Popuri, K., Ding, W., Balachandar, R., Beg, M.F.: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep. 8, 5697 (2018). https://doi.org/10.1038/s41598-018-22871-z

    Article  Google Scholar 

  18. Choi, H., Jin, K.H.: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav. Brain Res. 344, 103–109 (2018). https://doi.org/10.1016/j.bbr.2018.02.017

    Article  Google Scholar 

  19. Spasov, S., Passamonti, L., Duggento, A., Lio, P., Toschi, N.: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease 189, 383687 (2018). https://doi.org/10.1101/383687

  20. Ding, X., Bucholc, M., Wang, H., Glass, D.H., Wang, H., Clarke, D.H., Bjourson, A.J., Dowey, L.R.C., O’Kane, M., Prasad, G., Maguire, L., Wong-Lin, K.: A hybrid computational approach for efficient Alzheimer’s disease classification based on heterogeneous data. Sci. Rep. 8, 1–10 (2018). https://doi.org/10.1038/s41598-018-27997-8

    Article  Google Scholar 

  21. Cui, R., Liu, M., Initiative, N.: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput. Med. Imaging Graph. (2019). https://doi.org/10.1016/j.compmedimag.2019.01.005

    Article  Google Scholar 

  22. Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, A., Guaragnella, C., Bellotti, R., Tangaro, S.: Deep learning reveals Alzheimer’s disease onset in MCI subjects: results from an international challenge. J. Neurosci. Methods 302, 3–9 (2018). https://doi.org/10.1016/j.jneumeth.2017.12.011

    Article  Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization, PP. 1–15 (2014)

    Google Scholar 

  24. Ruder, S.: An Overview of Multi-Task Learning in Deep Neural Networks. arXiv Prepr. arXiv1706.05098 (2017). https://doi.org/10.1109/CVPR.2015.7299170

Download references

Acknowledgment

This work was supported by National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science and ICT)-NRF-2017R1A2B2012337.

This research was funded by the Galician Ministry of Education, University and Professional Training and by the European Regional Development Fund (ERDF/FEDER program) under grants ED431C 2018/29 and ED431G 2019/04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Sup Kwak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Sappagh, S., Abuhmed, T., Kwak, K.S. (2021). Alzheimer Disease Prediction Model Based on Decision Fusion of CNN-BiLSTM Deep Neural Networks. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1252. Springer, Cham. https://doi.org/10.1007/978-3-030-55190-2_36

Download citation

Publish with us

Policies and ethics