Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder. Early prediction of Alzheimer’s progression is a crucial process for the patients and their families. As a chronic disease, AD data are multimodal and time series in nature. Building a deep learning model to optimize multi-objective cost function produces a more stable and accurate model. In this paper, we propose a multimodal multitask deep learning model for AD progression detection based five time series modalities and a collection of static data. The model predicts AD progression as a multi-class classification task and four critical cognitive scores as regression tasks. The experimental results show that our model is medically intuitive, more accurate, and more stable than the state-of-the-art studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alberdi, A., Aztiria, A., Basarab, A.: On the early diagnosis of Alzheimer’s disease from multimodal signals: a survey. Artif. Intell. Med. 71, 1–29 (2016). https://doi.org/10.1016/j.artmed.2016.06.003
Li, H., Habes, M., Wolk, D.A., Fan, Y.: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal MRI 1–12 (2019). https://doi.org/10.1016/j.jalz.2019.02.007
Ramírez, J., Górriz, J.M., Ortiz, A., Martínez-Murcia, F.J., Segovia, F., Salas-Gonzalez, D., Castillo-Barnes, D., Illán, I.A., Puntonet, C.G.: Ensemble of random forests one vs. rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares. J. Neurosci. Methods 302, 47–57 (2018). https://doi.org/10.1016/j.jneumeth.2017.12.005
Yao, D., Calhoun, V.D., Fu, Z., Du, Y., Sui, J.: An ensemble learning system for a 4-way classification of Alzheimer’s disease and mild cognitive impairment. J. Neurosci. Methods 302, 75–81 (2018). https://doi.org/10.1016/j.jneumeth.2018.03.008
Bucholc, M., Ding, X., Wang, H., Glass, D.H., Wang, H., Prasad, G., Maguire, L.P., Bjourson, A.J., McClean, P.L., Todd, S., Finn, D.P., Wong-Lin, K.F.: A practical computerized decision support system for predicting the severity of Alzheimer’s disease of an individual. Expert Syst. Appl. 130, 157–171 (2019). https://doi.org/10.1016/j.eswa.2019.04.022
Polikar, R., Topalis, A., Parikh, D., Green, D., Frymiare, J., Kounios, J., Clark, C.M.: An ensemble based data fusion approach for early diagnosis of Alzheimer’s disease. Inf. Fusion. 9, 83–95 (2008). https://doi.org/10.1016/j.inffus.2006.09.003
Liu, M., Zhang, J., Adeli, E., Shen, D.: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans. Biomed. Eng. 1 (2018). https://doi.org/10.1109/TBME.2018.2869989
Ruiz, E., Ramírez, J., Górriz, J.M., Casillas, J.: Alzheimer’s disease computer-aided diagnosis: histogram-based analysis of regional MRI volumes for feature selection and classification. J. Alzheimer’s Dis. 65, 819–842 (2018). https://doi.org/10.3233/JAD-170514
Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56, 766–781 (2011). https://doi.org/10.1016/j.neuroimage.2010.06.013
Wang, T., Qiu, R.G., Yu, M.: Predictive modeling of the progression of Alzheimer ’ s disease with recurrent neural networks. Sci. Rep. 1–12 (2018). https://doi.org/10.1038/s41598-018-27337-w
Donnelly-Kehoe, P.A., Pascariello, G.O., Gómez, J.C.: Looking for Alzheimer’s disease morphometric signatures using machine learning techniques. J. Neurosci. Methods 302, 24–34 (2018). https://doi.org/10.1016/j.jneumeth.2017.11.013
Qiu, S., Chang, G.H., Panagia, M., Gopal, D.M., Au, R., Kolachalama, V.B.: Fusion of deep learning models of MRI scans, mini–mental state examination, and logical memory test enhances diagnosis of mild cognitive impairment. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 10, 737–749 (2018). https://doi.org/10.1016/j.dadm.2018.08.013
Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015). https://doi.org/10.1016/j.neuroimage.2014.10.002
Liu, F., Zhou, L., Shen, C., Yin, J.: Multiple kernel learning in the primal for multimodal Alzheimer’s disease classification. IEEE J. Biomed. Heal. Inform. 18, 984–990 (2013). https://doi.org/10.1109/jbhi.2013.2285378
Duchesne, S., Caroli, A., Geroldi, C., Collins, D.L., Frisoni, G.B.: Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage 47, 1363–1370 (2009). https://doi.org/10.1016/j.neuroimage.2009.04.023
Harutyunyan, H., Khachatrian, H., Kale, D.C., Ver Steeg, G., Galstyan, A.: Multitask learning and benchmarking with clinical time series data. Sci. data. 6, 96 (2019). https://doi.org/10.1038/s41597-019-0103-9
Lu, D., Popuri, K., Ding, W., Balachandar, R., Beg, M.F.: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep. 8, 5697 (2018). https://doi.org/10.1038/s41598-018-22871-z
Choi, H., Jin, K.H.: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav. Brain Res. 344, 103–109 (2018). https://doi.org/10.1016/j.bbr.2018.02.017
Spasov, S., Passamonti, L., Duggento, A., Lio, P., Toschi, N.: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease 189, 383687 (2018). https://doi.org/10.1101/383687
Ding, X., Bucholc, M., Wang, H., Glass, D.H., Wang, H., Clarke, D.H., Bjourson, A.J., Dowey, L.R.C., O’Kane, M., Prasad, G., Maguire, L., Wong-Lin, K.: A hybrid computational approach for efficient Alzheimer’s disease classification based on heterogeneous data. Sci. Rep. 8, 1–10 (2018). https://doi.org/10.1038/s41598-018-27997-8
Cui, R., Liu, M., Initiative, N.: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput. Med. Imaging Graph. (2019). https://doi.org/10.1016/j.compmedimag.2019.01.005
Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, A., Guaragnella, C., Bellotti, R., Tangaro, S.: Deep learning reveals Alzheimer’s disease onset in MCI subjects: results from an international challenge. J. Neurosci. Methods 302, 3–9 (2018). https://doi.org/10.1016/j.jneumeth.2017.12.011
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization, PP. 1–15 (2014)
Ruder, S.: An Overview of Multi-Task Learning in Deep Neural Networks. arXiv Prepr. arXiv1706.05098 (2017). https://doi.org/10.1109/CVPR.2015.7299170
Acknowledgment
This work was supported by National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science and ICT)-NRF-2017R1A2B2012337.
This research was funded by the Galician Ministry of Education, University and Professional Training and by the European Regional Development Fund (ERDF/FEDER program) under grants ED431C 2018/29 and ED431G 2019/04.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
El-Sappagh, S., Abuhmed, T., Kwak, K.S. (2021). Alzheimer Disease Prediction Model Based on Decision Fusion of CNN-BiLSTM Deep Neural Networks. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1252. Springer, Cham. https://doi.org/10.1007/978-3-030-55190-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-55190-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55189-6
Online ISBN: 978-3-030-55190-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)