Abstract
The paper deals with the software-defined networking concept applied to industrial networks. This innovative concept supports network programmability and dynamic implementation of customized features, including security related ones. In a previous work of the authors, the industrial network protection system (INPS) was designed and implemented. The INPS provides complex security features of various traditional and modern security solutions within a single system. In this paper, the AI module, which is one of the crucial parts of the INPS, is dealt with. In particular, a detailed report focused on the development of the AI module decision function is provided. As a result, an artificial neural network, used for the network traffic evaluation in the AI module, is developed and comprehensively tested.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
IEC 61850-5: Communication networks and systems in substation (2003)
Aloysius, N., Geetha, M.: A review on deep convolutional neural networks. In: 2017 International Conference on Communication and Signal Processing (ICCSP), pp. 0588–0592, April 2017
Bakhareva, N.F., Polezhaev, P.N., Ushakov, Y.A., Shukhman, A.E.: SDN-based firewall implementation for large corporate networks (2019)
Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Jackel, L.D., LeCun, Y., Muller, U.A., Sackinger, E., Simard, P., Vapnik, V.: Comparison of classifier methods: a case study in handwritten digit recognition. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No. 94CH3440-5), vol. 2, pp. 77–82, October 1994
Cheng, Q., Wu, C., Zhou, H., Zhang, Y., Wang, R., Ruan, W.: Guarding the perimeter of cloud-based enterprise networks: an intelligent SDN firewall. In: 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pP. 897–902, June 2018
Fiessler, A., Lorenz, C., Hager, S., Scheuermann, B.: FireFlow - high performance hybrid SDN-firewalls with OpenFlow, October 2018, pp. 267–270 (2019)
Gencay, R., Liu, T.: Nonlinear modelling and prediction with feedforward and recurrent networks. Phys. D 108(1–2), 119–134 (1997)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org
Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)
Holik, F., Dolezel, P.: Industrial network protection by SDN-based IPS with AI. In: Communications in Computer and Information Science (2020). In press
Holik, F.: Meeting smart city latency demands with SDN. In: Studies in Computational Intelligence, pp. 43–54 (2020)
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR, abs/1412.6980 (2014)
Kizuna, H., Sato, H.: The entering and exiting management system by person specification using Deep-CNN. In: 2017 Fifth International Symposium on Computing and Networking (CANDAR), pp. 542–545, November 2017
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks, vol. 2, pp. 1097–1105 (2012)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Li, H., Wei, F., Hu, H.: Enabling dynamic network access control with anomaly-based IDS and SDN, pp. 13–16 (2019)
Charfadine, S.M., Flauzac, O., Nolot, F., Rabat, C., Gonzalez, C.: Secure exchanges activity in function of event detection with the SDN. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 275, pp. 315–324 (2019)
Millstein, F.: Deep Learning with Keras. CreateSpace Independent Publishing Platform (2018)
Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, pp. 21–26 (1990)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, September 2014
Stouffer, K.A., Falco, J.A., Scarfone, K.A.: SP 800-82. Guide to industrial control systems (ICS) security: supervisory control and data acquisition (SCADA) systems, distributed control systems (DCS), and other control system configurations such as programmable logic controllers (PLC). Technical report, Gaithersburg, MD, United States (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Holik, F., Dolezel, P., Merta, J., Stursa, D. (2021). Development of Artificial Intelligence Based Module to Industrial Network Protection System. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1252. Springer, Cham. https://doi.org/10.1007/978-3-030-55190-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-55190-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55189-6
Online ISBN: 978-3-030-55190-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)