[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Exploration of Time-Varying Connected Graphs with Silent Agents

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12156))

  • 379 Accesses

Abstract

Exploration is a fundamental task in mobile computing. We study the version where a group of cooperating agents is situated in a graph, and the task is to make sure that every vertex of the graph is visited by some agent. We consider discrete-time evolving graphs with an adaptive adversary: the adversary observes the actions of the agents, and can choose the graph for the next step arbitrarily with the only restriction that it must be connected. We are interested in solving the problem with weakest possible agents. We provide an exploration algorithm where the agents can not interact in any way among themselves or with the vertices (no messages, whiteboards, etc), and even don’t sense each other. They are only aware of the others from the results of a mutual-exclusion mechanism in the vertices. We show that \(2m-n+1\) agents are sufficient, where m is the number of edges. Interestingly, \(m-n+1\) agents are needed even in an offline setting when they are controlled by a central entity.

We don’t know whether the algorithm achieves polynomial exploration time. However, we provide a different algorithm that uses \(O(n^4)\) agents in a slightly stronger model (the agents can observe the number of agents in a vertex, and their actions), but achieves the exploration time \(O(n^9)\).

The research was supported by Slovak grant VEGA 1/0601/20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If the domain of \(\lambda \) is of cardinality O(n), then \(O(n\log n)\) bits of local memory will always be sufficient.

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambühl, C., Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7(2), 17 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16–18 October 1978, pp. 132–142. IEEE Computer Society (1978)

    Google Scholar 

  4. Blum, M., Sakoda, W.J.: On the capability of finite automata in 2 and 3 dimensional space. In: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1 November 1977, pp. 147–161. IEEE Computer Society (1977)

    Google Scholar 

  5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPEDS 27(5), 387–408 (2012)

    Google Scholar 

  6. Das, S.: Graph explorations with mobile agents. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing. LNCS, vol. 11340, pp. 403–422. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-11072-7_16

    Chapter  Google Scholar 

  7. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dobrev, S., Jansson, J., Sadakane, K., Sung, W.-K.: Finding short right-hand-on-the-wall walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 127–139. Springer, Heidelberg (2005). https://doi.org/10.1007/11429647_12

    Chapter  Google Scholar 

  9. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_4

    Chapter  Google Scholar 

  10. Flocchini, P., Mans, B., Santoro, N.: Sense of direction in distributed computing. Theor. Comput. Sci. 291(1), 29–53 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities, Current Research in Moving and Computing. LNCS, vol. 11340. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-11072-7

    Book  Google Scholar 

  12. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gasieniec, L., Klasing, R., Martin, R.A., Navarra, A., Zhang, X.: Fast periodic graph exploration with constant memory. J. Comput. Syst. Sci. 74(5), 808–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gąsieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 14–29. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92248-3_2

    Chapter  MATH  Google Scholar 

  15. Gotoh, T., Flocchini, P., Masuzawa, T., Santoro, N.: Tight bounds on distributed exploration of temporal graphs. In: Felber, P., Friedman, R., Gilbert, S., Miller, A., (eds.) 23rd International Conference on Principles of Distributed Systems (OPODIS 2019), 17–19 December 2019, Neuchâtel, Switzerland. LIPIcs, vol. 153, pp. 22:1–22:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  16. Ilcinkas, D.: Setting port numbers for fast graph exploration. Theor. Comput. Sci. 401(1–3), 236–242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic exploration. Algorithmica 63(1–2), 26–38 (2012). https://doi.org/10.1007/s00453-011-9518-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Luna, G., Dobrev, S., Flocchini, P., Santoro, N.: Distributed exploration of dynamic rings. Distrib. Comput. 33(1), 41–67 (2018). https://doi.org/10.1007/s00446-018-0339-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2), 281–295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rollik, H.: Automaten in planaren graphen. Acta Inf. 13, 287–298 (1980). https://doi.org/10.1007/BF00288647

    Article  MathSciNet  MATH  Google Scholar 

  21. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Steinová, M.: On the power of local orientations. In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 156–169. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69355-0_14

    Chapter  Google Scholar 

  23. Tajibnapis, W.D.: A correctness proof of a topology information maintenance protocol for a distributed computer network. Commun. ACM 20(7), 477–485 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003). https://doi.org/10.1007/s00453-003-1030-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rastislav Královič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobrev, S., Královič, R., Pardubská, D. (2020). Exploration of Time-Varying Connected Graphs with Silent Agents. In: Richa, A., Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2020. Lecture Notes in Computer Science(), vol 12156. Springer, Cham. https://doi.org/10.1007/978-3-030-54921-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54921-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54920-6

  • Online ISBN: 978-3-030-54921-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics