[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Sound Field Reconstruction from Incomplete Data by Solving Fuzzy Relational Equations

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2020)

Abstract

The approach to solving inverse problems of source identification in acoustics is proposed based on fuzzy relational calculus. The compositional rule of inference connects the real and observed fuzzy acoustic image using the relationship matrix, which reflects the degree of completeness of the microphone array measurement data. The fuzzy model of the acoustic field is based on 3D membership functions, for which the degree of membership decreases in proportion to the square of the distance to the source. The problem of reconstructing the acoustic field is formulated as the problem of inverse logical inference. The method for reconstructing the acoustic field from incomplete data is proposed based on solving fuzzy relational equations. The problem consists in finding such a number of sound sources, their locations and powers, which minimize the difference between the model and observed fuzzy acoustic image. The solutions of the equation system represent the variants of the acoustic field reconstruction in the form of the main acoustic surface and a set of secondary acoustic surfaces. The main acoustic surface is generated by the least number of sources. The set of secondary acoustic surfaces represents the variants of the sound field reconstruction generated by the upper solutions for the number of sources. Since the sources distribution is completely determined by the properties of the solution set, the proposed approach allows avoiding the generation and selection of candidate sources, that provides simplification of the reconstruction process and reduction of time costs. The genetic and neural algorithm provides accurate and fast reconstruction of the acoustic field for an unknown number of sources and their configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agounad, S., Aassif, E., Khandouch, Y., Maze, G., Decultot, D.: Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bio-inspired algorithms. Ultrasonics 83, 222–235 (2018). https://doi.org/10.1016/j.ultras.2017.06.015

    Article  Google Scholar 

  2. Azarov, O., Krupelnitsky, L., Rakytyanska, H.: A fuzzy model of television rating control with trend rules tuning based on monitoring results. In: IEEE 2nd International Conference on Data Stream Mining and Processing (DSMP), pp. 369–375. IEEE Publ., Lviv (2018). https://doi.org/10.1109/DSMP.2018.8478583

  3. Azarov, O., Krupelnitsky, L., Rakytyanska, H.: Television rating control in the multichannel environment using trend fuzzy knowledge bases and monitoring results. Data 3(4), 57 (2018). https://doi.org/10.3390/data3040057

    Article  Google Scholar 

  4. Azarov, O., Krupelnitsky, L., Steiskal, V., Bilokon, O.: Specialized and measuring equipment of own design and production for TV and radio broadcasting. Catalog of the Scientific and Technical Center “Analog-Digital Systems". VNTU, Vinnitsya (2015)

    Google Scholar 

  5. Bai, M., Lin, J.-H.: Source identification system based on the time-domain nearfield equivalence source imaging: fundamental theory and implementation. J. Sound Vib. 307(1–2), 202–225 (2007). https://doi.org/10.1016/j.jsv.2007.06.025

    Article  Google Scholar 

  6. Benesty, J., Chen, J.: Study and Design of Differential Microphone Arrays. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33753-6

    Book  Google Scholar 

  7. Bi, C.X., Li, Y.C., Zhang, Y.B., Zhang, X.Z., Xu, L.: Signal reconstruction of moving sound sources with a fixed microphone array. Mech. Syst. Sig. Process. 118, 277–289 (2019). https://doi.org/10.1016/j.ymssp.2018.08.052

    Article  Google Scholar 

  8. Brandstein, M., Ward, D.: Microphone Arrays: Signal Processing Techniques and Applications. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04619-7

    Book  Google Scholar 

  9. Chu, N., Picheral, J., Mohammad-Djafari, A., Gac, N.: A robust super-resolution approach with sparsity constraint in acoustic imaging. Appl. Acoust. 76, 197–208 (2014). https://doi.org/10.1016/j.apacoust.2013.08.007

    Article  Google Scholar 

  10. Gauthier, P.A., Camier, C., Pasco, Y., Berry, A., Delalay, M.A.: Beamforming regularization matrix and inverse problems applied to sound field measurement and extrapolation using microphone array. J. Sound Vib. 330(24), 5852–5877 (2011). https://doi.org/10.1016/j.jsv.2011.07.022

    Article  Google Scholar 

  11. Gilquin, L., Bouley, S., Antoni, J., Le Magueresse, T., Marteau, C.: Sensitivity analysis of two inverse methods: conventional beamforming and Bayesian focusing. J. Sound Vib. 455, 88–202 (2019). https://doi.org/10.1016/j.jsv.2019.05.002

    Article  Google Scholar 

  12. Hansen, T., Marengo, E.: SVD solutions to inverse source problems in the time domain: application to complex point sources. Wave Motion 89, 93–103 (2019). https://doi.org/10.1016/j.wavemoti.2019.03.008

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Z., Lin, X., Li, E.: A non-contact acoustic pressure-based method for load identification in acoustic-structural interaction system with non-probabilistic uncertainty. Appl. Acoust. 148, 223–237 (2019). https://doi.org/10.1016/j.apacoust.2018.12.034

    Article  Google Scholar 

  14. Holland, K., Nelson, P.: The application of inverse methods to spatially-distributed acoustic sources. J. Sound Vib. 332(22), 5727–5747 (2013). https://doi.org/10.1016/j.jsv.2013.06.009

    Article  Google Scholar 

  15. Hsu, C.: Advanced Signal Processing Technology by Soft Computing. World Scientific, New York (2000). https://doi.org/10.1142/4555

    Book  Google Scholar 

  16. Koo, S., Karve, P., Kallivokas, L.: A comparison of time-reversal and inverse-source methods for the optimal delivery of wave energy to subsurface targets. Wave Motion 67, 121–140 (2016). https://doi.org/10.1016/j.wavemoti.2016.07.011

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuhne, M., Togneri, R., Nordholm, S.: Robust source localization in reverberant environments based on weighted fuzzy clustering. IEEE Sig. Process. Lett. 16(2), 85–88 (2009). https://doi.org/10.1109/LSP.2008.2009833

    Article  Google Scholar 

  18. Kyle, T., Woods, D., Bolton, J., Rhoads, J.: Least-squares reconstruction of low-frequency inhomogeneous plane waves. J. Sound Vib. 430, 134–149 (2018). https://doi.org/10.1016/j.jsv.2018.05.009

    Article  Google Scholar 

  19. Lu, J., Cheng, W., He, D., Zi, Y.: A novel underdetermined blind source separation method with noise and unknown source number. J. Sound Vib. 457, 67–91 (2019). https://doi.org/10.1016/j.jsv.2019.05.037

    Article  Google Scholar 

  20. Padois, T., Doutres, O., Sgard, F., Berry, A.: Time domain localization technique with sparsity constraint for imaging acoustic sources. Mech. Syst. Sig. Process. 94, 85–93 (2017). https://doi.org/10.1016/j.ymssp.2017.02.035

    Article  Google Scholar 

  21. Pan, S., Jiang, W.: A hybrid approach to reconstruct transient sound field based on the free-field time reversal method and interpolated time-domain equivalent source method. J. Sound Vib. 333(16), 3625–3638 (2014). https://doi.org/10.1016/j.jsv.2014.03.029

    Article  Google Scholar 

  22. Peeva, K., Kyosev, Y.: Fuzzy Relational Calculus. Theory, Applications and Software. World Scientific, New York (2004)

    MATH  Google Scholar 

  23. Pereira, A., Antoni, J., Leclere, Q.: Empirical Bayesian regularization of the inverse acoustic problem. Appl. Acoust. 97, 11–29 (2015). https://doi.org/10.1016/j.apacoust.2015.03.008

    Article  Google Scholar 

  24. Pham, M., Oudompheng, B., Mars, J., Nicolas, B.: A noise-robust method with smoothed l1/l2 regularization for sparse moving-source mapping. Sig. Process. 135, 96–106 (2017). https://doi.org/10.1016/j.sigpro.2016.12.022

    Article  Google Scholar 

  25. Qiao, B., Zhang, X., Gao, J., Chen, X.: Impact-force sparse reconstruction from highly incomplete and inaccurate measurements. J. Sound Vib. 376, 72–94 (2016). https://doi.org/10.1016/j.jsv.2016.04.040

    Article  Google Scholar 

  26. Rabinovich, D., Turkel, E., Givoli, D.: An augmented time reversal method for source and scatterer identification. J. Comput. Phys. 375, 99–119 (2018). https://doi.org/10.1016/j.jcp.2018.08.026

    Article  MathSciNet  MATH  Google Scholar 

  27. Rakytyanska, H.: Optimization of knowledge bases on the basis of fuzzy relations by the criteria “accuracy-complexity”. East.-Eur. J. Enterp. Technol. 2(4), 24–31 (2017). https://doi.org/10.15587/1729-4061.2017.95870

    Article  Google Scholar 

  28. Rienstra, S., Hirschberg, A.: An Introduction to Acoustics. Eindhoven University of Technology, Eindhoven (2009)

    Google Scholar 

  29. Rotshtein, A., Rakytyanska, H.: Adaptive diagnostic system based on fuzzy relations. Cybern. Syst. Anal. 45(4), 623–637 (2009). https://doi.org/10.1007/s10559-009-9130-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Rotshtein, A., Rakytyanska, H.: Fuzzy logic and the least squares method in diagnosis problem solving. In: Sarma, R. (ed.) Genetic Diagnoses, pp. 53–97. Nova Science Publishers, New York (2011)

    Google Scholar 

  31. Rotshtein, A., Rakytyanska, H.: Fuzzy Evidence in Identification, Forecasting and Diagnosis. In: Studies in Fuzziness and Soft Computing, vol. 275. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25786-5

  32. Rotshtein, A., Rakytyanska, H.: Fuzzy genetic object identification: multiple-inputs multiple-outputs case. In: Hippe, Z., Kulikowski, J., Mroczek, T. (eds.) Human-Computer Systems Interaction. Part II. Advances in Intelligent and Soft Computing, vol. 99, pp. 375–394. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23172-8_25

  33. Rotshtein, A., Rakytyanska, H.: Expert rules refinement by solving fuzzy relational equations. In: 6th IEEE Conference on Human System Interaction, pp. 257–264. IEEE Publ., Sopot (2013). https://doi.org/10.1109/HSI.2013.6577833

  34. Rotshtein, A., Rakytyanska, H.: Optimal design of rule-based systems by solving fuzzy relational equations. In: Hippe, Z., Kulikowski, L., Mroczek, T., Wtorek, J. (eds.) Issues and Challenges in Artificial Intelligence. Studies in Computational Intelligence, vol. 559, pp. 167–178. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06883-1_14

  35. Toth, B., Vad, J.: A fuzzy clustering method for periodic data, applied for processing turbomachinery beamforming maps. J. Sound Vib. 434, 298–313 (2018). https://doi.org/10.1016/j.jsv.2018.08.002

    Article  Google Scholar 

  36. Wang, C., Qiu, Z., Li, Y.: Hybrid uncertainty propagation of coupled structural-acoustic system with large fuzzy and interval parameters. Appl. Acoust. 102, 62–70 (2016). https://doi.org/10.1016/j.apacoust.2015.09.006

    Article  Google Scholar 

  37. Xie, J., Zhu, M.: Investigation of acoustic and visual features for acoustic scene classification. Expert Syst. Appl. 126, 20–29 (2019). https://doi.org/10.1016/j.eswa.2019.01.085

    Article  Google Scholar 

  38. Yager, R., Filev, D.: Essentials of Fuzzy Modeling and Control. Wiley, New York (1994)

    Google Scholar 

  39. Zhang, Y., Wang, Y., Zhang, C.: Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction. Ultrasonics 52(8), 1046–1055 (2012). https://doi.org/10.1016/j.ultras.2012.08.012

    Article  MathSciNet  Google Scholar 

  40. Zhu, J., Ge, Z., Song, Z., Gao, F.: Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data. Ann. Rev. Control 46, 107–133 (2018). https://doi.org/10.1016/j.arcontrol.2018.09.003

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The paper was prepared within the 58–D–393 “Specialized AD systems for audio location and identification of objects on terrain” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Rakytyanska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azarov, O., Krupelnitskyi, L., Rakytyanska, H. (2021). Sound Field Reconstruction from Incomplete Data by Solving Fuzzy Relational Equations. In: Babichev, S., Lytvynenko, V., Wójcik, W., Vyshemyrskaya, S. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2020. Advances in Intelligent Systems and Computing, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-54215-3_35

Download citation

Publish with us

Policies and ethics