[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Protograph-Based Decoding of Low-Density Parity-Check Codes with Hamming Weight Amplifiers

  • Conference paper
  • First Online:
Code-Based Cryptography (CBCrypto 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12087))

Included in the following conference series:

  • 357 Accesses

Abstract

A new protograph-based framework for message passing (MP) decoding of low density parity-check (LDPC) codes with Hamming weight amplifiers (HWAs), which are used e.g. in the NIST post-quantum crypto candidate LEDAcrypt, is proposed. The scheme exploits the correlations in the error patterns introduced by the HWA using a turbo-like decoding approach where messages between the decoders for the outer code given by the HWA and the inner LDPC code are exchanged. Decoding thresholds for the proposed scheme are computed using density evolution (DE) analysis for belief propagation (BP) and ternary message passing (TMP) decoding and compared to existing decoding approaches. The proposed scheme improves upon the basic approach of decoding LDPC code from the amplified error and has a similar performance as decoding the corresponding moderate-density parity-check (MDPC) code but with a significantly lower computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In  [8] and other literature the bit-flipping (BF) decoder is referred to as “Gallager’s BF” algorithm although it is different from the algorithm proposed by Gallager in  [9].

  2. 2.

    As in most of the literature, we loosely define a code to be QC if there exists a permutation of its coordinates such that the resulting (equivalent) code has the following property: if \(\textit{\textbf{x}}\) is a codeword, then any cyclic shift of \(\textit{\textbf{x}}\) by \(\ell \) positions is a codeword. For example, a code admitting a parity-check matrix as an array of \(R_0\times N_0\) circulants does not fulfill this property. However the code is QC in the loose sense, since it is possible to permute its coordinates to obtain a code for which every cyclic shift of a codeword by \(\ell =N_0\) positions yields another codeword.

  3. 3.

    We assume that \(G'(x)\) can be brought into systematic form which is possible with high probability (see  [8]).

  4. 4.

    We assume that the CCA-2 security conversions from  [12] are applied to the McEliece cryptosystem to allow for systematic encoding without security reduction.

References

  1. McEliece, R.J.: A public-key cryptosystem based on algebraic codes. Deep Space Netw. Progr. Rep. 44, 114–116 (1978)

    Google Scholar 

  2. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  3. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes in the McEliece cryptosystem. In: Proceedings IEEE International Symposium Information Theory (ISIT), Sorrento, Italy, p. 215 (2000)

    Google Scholar 

  4. Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC Codes. In: IEEE International Symposium on Information Theory, pp. 2591–2595 (2007)

    Google Scholar 

  5. Otmani, A., Tillich, J.-P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes. Math. Comput. Sci. 3(2), 129–140 (2010)

    Article  MathSciNet  Google Scholar 

  6. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the mceliece cryptosystem based on QC-LDPC codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 246–262. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_17

    Chapter  Google Scholar 

  7. Baldi, M., Bianchi, M., Chiaraluce, F.:Optimization of the parity-check matrix density in QC-LDPC code-based McEliece cryptosystems. In: 2013 IEEE International Conference on Communications Workshops (ICC), pp. 707–711. IEEE(2013)

    Google Scholar 

  8. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAcrypt: low-dEnsity parity-checkcoDe-bAsed cryptographic systems. NIST PQC submission (2019). https://www.ledacrypt.org/

  9. Gallager, R.G.: Low-Density Parity-Check Codes. M.I.T. Press, Cambridge (1963)

    Book  Google Scholar 

  10. Rudolph, L.: A class of majority logic decodable codes (corresp.). IEEE Trans. Inf. Theory 13(2), 305–307 (1967)

    Article  Google Scholar 

  11. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey, pp. 2069–2073 (2013)

    Google Scholar 

  12. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_2

    Chapter  MATH  Google Scholar 

  13. Thorpe, J.: Low-density parity-check (LDPC) codes constructed from protographs. JPL IPN, Technical report, pp. 42–154, August 2003

    Google Scholar 

  14. Abbasfar, A., Yao, K., Disvalar, D.: Accumulate repeat accumulate codes. In: Proceedings of IEEE Globecomm, Dallas, Texas (2004)

    Google Scholar 

  15. Divsalar, D., Dolinar, S., Jones, C., Andrews, K.: Capacity-approaching protograph codes. IEEE JSAC 27(6), 876–888 (2009)

    Google Scholar 

  16. Liva, G., Chiani, M.: Protograph LDPC code design based on EXIT analysis. In: Proceedings of IEEE Globecomm, Washington, US, pp. 3250–3254, December 2007

    Google Scholar 

  17. Bartz, H., Liva, G.: On decoding schemes for the MDPC-McEliece cryptosystem. In: 12th International ITG Conference on Systems, Communications and Coding (SCC), pp. 1–6. VDE (2019)

    Google Scholar 

  18. Lechner, G., Pedersen, T., Kramer, G.: Analysis and design of binary message passing decoders. IEEE Trans. Commun. 60(3), 601–607 (2011)

    Article  Google Scholar 

  19. Yacoub, E.B., Steiner, F., Matuz, B., Liva, G.: Protograph-based LDPC code design for ternary message passing decoding. In: 12th International ITG Conference on Systems, Communications and Coding, SCC 2019, pp. 1–6. VDE, February 2019

    Google Scholar 

  20. Chung, S.-Y., Forney, G.D., Richardson, T.J., Urbanke, R.: On the design of low-density parity-check codes within \(0.0045\) dB of the Shannon limit. IEEE Commun. Lett. 5(2), 58–60 (2001)

    Article  Google Scholar 

  21. Jin, H., Richardson, T.: A new fast density evolution. In: 2006 IEEE Information Theory Workshop-ITW Punta del Este, pp. 183–187. IEEE (2006)

    Google Scholar 

  22. Pulini, P., Liva, G., Chiani, M.: Unequal diversity LDPC codes for relay channels. IEEE Trans. Wirel. Commun. 12(11), 5646–5655 (2013)

    Article  Google Scholar 

  23. Chung, S.-Y., Richardson, T.J., Urbanke, R.L.: Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Trans. Inf. Theory 47(2), 657–670 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hannes Bartz , Emna Ben Yacoub , Lorenza Bertarelli or Gianluigi Liva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartz, H., Yacoub, E.B., Bertarelli, L., Liva, G. (2020). Protograph-Based Decoding of Low-Density Parity-Check Codes with Hamming Weight Amplifiers. In: Baldi, M., Persichetti, E., Santini, P. (eds) Code-Based Cryptography. CBCrypto 2020. Lecture Notes in Computer Science(), vol 12087. Springer, Cham. https://doi.org/10.1007/978-3-030-54074-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54074-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54073-9

  • Online ISBN: 978-3-030-54074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics