[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Background Subtraction Based on Encoder-Decoder Structured CNN

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12047))

Included in the following conference series:

Abstract

Background subtraction is commonly adopted for detecting moving objects in image sequence. It is an important and fundamental computer vision task and has a wide range of applications. We propose a background subtraction framework with deep learning model. Pixels are labeled as background or foreground by an Encoder-Decoder Structured Convolutional Neural Network (CNN). The encoder part produces a high-level feature vector. Then, the decoder part uses the feature vector to generate a binary segmentation map, which can be used to identify moving objects. The background model is generated from the image sequence. Each frame of the image sequence and the background model are input to the CNN for pixel classification. Background subtraction result can be erroneous as videos may be captured in various complex scenes. The background model must be updated. Therefore, we propose a feedback scheme to perform the pixelwise background model updating. For the training of the CNN, the input images and the corresponding ground truths are drawn from the benchmark dataset Change Detection 2014. The results show that our proposed architecture outperforms many well-known traditional and deep learning background subtraction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouwmans, T.: Background subtraction for visual surveillance: a fuzzy approach. In: Handbook on Soft Computing for Video Surveillance. Taylor and Francis Group (2012)

    Google Scholar 

  2. El Baf, F., Bouwmans, T.: Comparison of background subtraction methods for a multimedia learning space. In: Proceedings of International Conference on Signal Processing and Multimedia (2007)

    Google Scholar 

  3. Hsieh, J.-W., Hsu, Y.-T., Liao, H.-Y.M., Chen, C.-C.: Video-based human movement analysis and its application to surveillance systems. IEEE Trans. Multimedia 10(3), 372–384 (2008)

    Article  Google Scholar 

  4. Lu, W., Tan, Y.-P.: A vision-based approach to early detection of drowning incidents in swimming pools. IEEE Trans. Circuits Syst. Video Technol. 14(2), 159–178 (2004)

    Article  Google Scholar 

  5. Visser, R., Sebe, N., Bakker, E.: Object recognition for video retrieval. In: Proceedings of International Conference on Image and Video Retrieval, pp. 250–259 (2002)

    Google Scholar 

  6. Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: Moving object detection in spatial domain using background removal techniques – state-of-art. Recent Pat. Comput. Sci. 1, 32–54 (2008)

    Article  Google Scholar 

  7. Bouwmans, T.: Recent advanced statistical background modeling for foreground detection - a systematic survey. Recent Pat. Comput. Sci. 4(3), 147–176 (2011)

    Google Scholar 

  8. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  9. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of International Conference on Pattern Recognition, pp. 28–31 (2004)

    Google Scholar 

  10. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE 90(7), 1151–1163 (2002)

    Article  Google Scholar 

  11. Barnich, O., Van Droogenbroeck, M.: ViBE: a powerful random technique to estimate the background in video sequences. In: Proceedings of International Conference Acoustics, Speech and Signal Processing, pp. 945–948 (2009)

    Google Scholar 

  12. Mahadevan, V., Vasconcelos, N.: Spatiotemporal saliency in dynamic scenes. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 171–177 (2010)

    Article  Google Scholar 

  13. Heikkilä, M., Pietikäinen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)

    Article  Google Scholar 

  14. Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1301–1306 (2010)

    Google Scholar 

  15. St-Charles, P.-L., Bilodeau, G.-A., Bergevin, R.: SuBSENSE: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015)

    Article  MathSciNet  Google Scholar 

  16. Wang, Y., Luo, Z., Jodoin, P.-M.: Interactive deep learning method for segmenting moving objects. Pattern Recogn. Lett. 96, 66–75 (2017)

    Article  Google Scholar 

  17. Lim, L.A., Keles, H.Y.: Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding. arXiv:1801.02225 [cs.CV] (2018)

  18. Babaee, M., Dinh, D.T., Rigoll, G.: A deep convolutional neural network for video sequence background subtraction. Pattern Recogn. 76, 635–649 (2018)

    Article  Google Scholar 

  19. Van Droogenbroeck, M., Paquot, O.: Background subtraction: experiments and improvements for ViBE. In: Proceedings of IEEE Workshop on Change Detection at IEEE Conference on Computer Vision and Pattern Recognition, pp. 32–37 (2012)

    Google Scholar 

  20. Kim, S.W., Yun, K., Yi, K.M., Kim, S.J., Choi, J.Y.: Detection of moving objects with a moving camera using non-panoramic background model. Mach. Vis. Appl. 24, 1015–1028 (2013)

    Article  Google Scholar 

  21. Lauguard, B., Piérard, S., Van Droogenbroeck, M.: LaBGen-P: a pixel-level stationary background generation method based on LaBGen. In: Proceedings of IEEE International Conference on Pattern Recognition, pp. 107–113 (2016)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Wang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: CDnet 2014: an expanded change detection benchmark dataset. In: Proceedings of IEEE Workshop on Change Detection at CVPR-2014, pp. 387–394 (2014)

    Google Scholar 

  24. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of International Conference on Computer Vision (2015)

    Google Scholar 

  25. St-Charles, P.-L., Bilodeau, G.-A., Bergevin, R.: A self-adjusting approach to change detection based on background word consensus. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision, pp. 990–997 (2015)

    Google Scholar 

  26. Wang, R., Bunyak, F., Seetharaman, G., Palaniappan, K.: Static and moving object detection using flux tensor with split gaussian models. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (2014)

    Google Scholar 

  27. Chen, Y., Wang, J., Lu, H.: Learning sharable models for robust background subtraction. In: Proceedings of IEEE International Conference on Multimedia and Expo (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok Leung Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Chan, K.L. (2020). Background Subtraction Based on Encoder-Decoder Structured CNN. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41299-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41298-2

  • Online ISBN: 978-3-030-41299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics