[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Partition Based Bayesian Multi-objective Optimization Algorithm

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

The research is aimed at coping with the inherent computational intensity of Bayesian multi-objective optimization algorithms. We propose the implementation which is based on the rectangular partition of the feasible region and circumvents much of computational burden typical for the traditional implementations of Bayesian algorithms. The included results of the solution of testing and practical problems illustrate the performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baronas, R., Ivanauskas, F., Kulys, J.: Mathematical modeling of biosensors based on an array of enzyme microreactors. Sensors 6(4), 453–465 (2006)

    Article  Google Scholar 

  2. Baronas, R., Kulys, J., Petkevičius, L.: Computational modeling of batch stirred tank reactor based on spherical catalyst particles. J. Math. Chem. 57(1), 327–342 (2019)

    Article  MathSciNet  Google Scholar 

  3. Calvin, J., Gimbutienė, G., Phillips, W., Žilinskas, A.: On convergence rate of a rectangular partition based global optimization algorithm. J. Global Optim. 71, 165–191 (2018)

    Article  MathSciNet  Google Scholar 

  4. Calvin, J., Žilinskas, A.: On efficiency of a single variable bi-objective optimization algorithm. Optim. Lett. 14(1), 259–267 (2020). https://doi.org/10.1007/s11590-019-01471-4

    Article  MathSciNet  Google Scholar 

  5. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2009)

    MATH  Google Scholar 

  6. Emmerich, M., Deutz, A.H., Yevseyeva, I.: On reference point free weighted hypervolume indicators based on desirability functions and their probabilistic interpretation. Proc. Technol. 16, 532–541 (2014)

    Article  Google Scholar 

  7. Feliot P., Bect J., Vazquez E.: User preferences in Bayesian multi-objective optimization: the expected weighted hypervolume improvement criterion. arXiv:1809.05450v1 (2018)

  8. Floudas, C.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer, Dodrecht (2000)

    Book  Google Scholar 

  9. Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X_1022

    Chapter  Google Scholar 

  10. Pardalos, P., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61007-8

    Book  MATH  Google Scholar 

  11. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-9093-7

    Book  MATH  Google Scholar 

  12. Paulavičius, R., Sergeyev, Y., Kvasov, D., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Global Optim. 59, 545–567 (2014)

    Article  MathSciNet  Google Scholar 

  13. Sergeyev, Y., Kvasov, D., Mukhametzhanov, M.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 453, 1–8 (2018)

    Google Scholar 

  14. Sergeyev, Y., Kvasov, D.: Deterministic Global Optimization: An Introduction to the Diagonal Approach. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-7199-2

    Book  MATH  Google Scholar 

  15. Žilinskas, A., Zhigljavsky, A.: Stochastic global optimization: a review on the occasion of 25 years of informatica. Informatica 27(2), 229–256 (2016)

    Article  Google Scholar 

  16. Žilinskas, A.: On the worst-case optimal multi-objective global optimization. Optim. Lett. 7(8), 1921–1928 (2013)

    Article  MathSciNet  Google Scholar 

  17. Žilinskas, A.: A statistical model-based algorithm for black-box multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–92 (2014)

    Article  MathSciNet  Google Scholar 

  18. Žilinskas, A., Baronas, R., Litvinas, L., Petkevičius, L.: Multi-objective optimization and decision visualization of batch stirred tank reactor based on spherical catalyst particles. Nonlinear Anal. Model. Control 24(6), 1019–1033 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear least squares regression. J. Global Optim. 56(2), 265–277 (2013)

    Article  MathSciNet  Google Scholar 

  20. Žilinskas, A., Gimbutienė, G.: A hybrid of Bayesian approach based global search with clustering aided local refinement. Commun. Nonlinear Sci. Numer. Simul. 78, 104785 (2019)

    Article  MathSciNet  Google Scholar 

  21. Zitzler, E., Thiele, L., Lauman, M., Fonseca, C., Fonseca, V.: Performance measurement of multi-objective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Lithuania under Grant No. P-MIP-17-61. We thank the reviewers for their valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Žilinskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Žilinskas, A., Litvinas, L. (2020). A Partition Based Bayesian Multi-objective Optimization Algorithm. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics