Abstract
The research is aimed at coping with the inherent computational intensity of Bayesian multi-objective optimization algorithms. We propose the implementation which is based on the rectangular partition of the feasible region and circumvents much of computational burden typical for the traditional implementations of Bayesian algorithms. The included results of the solution of testing and practical problems illustrate the performance of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baronas, R., Ivanauskas, F., Kulys, J.: Mathematical modeling of biosensors based on an array of enzyme microreactors. Sensors 6(4), 453–465 (2006)
Baronas, R., Kulys, J., Petkevičius, L.: Computational modeling of batch stirred tank reactor based on spherical catalyst particles. J. Math. Chem. 57(1), 327–342 (2019)
Calvin, J., Gimbutienė, G., Phillips, W., Žilinskas, A.: On convergence rate of a rectangular partition based global optimization algorithm. J. Global Optim. 71, 165–191 (2018)
Calvin, J., Žilinskas, A.: On efficiency of a single variable bi-objective optimization algorithm. Optim. Lett. 14(1), 259–267 (2020). https://doi.org/10.1007/s11590-019-01471-4
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2009)
Emmerich, M., Deutz, A.H., Yevseyeva, I.: On reference point free weighted hypervolume indicators based on desirability functions and their probabilistic interpretation. Proc. Technol. 16, 532–541 (2014)
Feliot P., Bect J., Vazquez E.: User preferences in Bayesian multi-objective optimization: the expected weighted hypervolume improvement criterion. arXiv:1809.05450v1 (2018)
Floudas, C.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer, Dodrecht (2000)
Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X_1022
Pardalos, P., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61007-8
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-9093-7
Paulavičius, R., Sergeyev, Y., Kvasov, D., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Global Optim. 59, 545–567 (2014)
Sergeyev, Y., Kvasov, D., Mukhametzhanov, M.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 453, 1–8 (2018)
Sergeyev, Y., Kvasov, D.: Deterministic Global Optimization: An Introduction to the Diagonal Approach. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-7199-2
Žilinskas, A., Zhigljavsky, A.: Stochastic global optimization: a review on the occasion of 25 years of informatica. Informatica 27(2), 229–256 (2016)
Žilinskas, A.: On the worst-case optimal multi-objective global optimization. Optim. Lett. 7(8), 1921–1928 (2013)
Žilinskas, A.: A statistical model-based algorithm for black-box multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–92 (2014)
Žilinskas, A., Baronas, R., Litvinas, L., Petkevičius, L.: Multi-objective optimization and decision visualization of batch stirred tank reactor based on spherical catalyst particles. Nonlinear Anal. Model. Control 24(6), 1019–1033 (2019)
Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear least squares regression. J. Global Optim. 56(2), 265–277 (2013)
Žilinskas, A., Gimbutienė, G.: A hybrid of Bayesian approach based global search with clustering aided local refinement. Commun. Nonlinear Sci. Numer. Simul. 78, 104785 (2019)
Zitzler, E., Thiele, L., Lauman, M., Fonseca, C., Fonseca, V.: Performance measurement of multi-objective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Acknowledgements
This work was supported by the Research Council of Lithuania under Grant No. P-MIP-17-61. We thank the reviewers for their valuable remarks.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Žilinskas, A., Litvinas, L. (2020). A Partition Based Bayesian Multi-objective Optimization Algorithm. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-40616-5_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40615-8
Online ISBN: 978-3-030-40616-5
eBook Packages: Computer ScienceComputer Science (R0)