[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Diversity of Processing Times in Permutation Flow Shop Scheduling Problems

  • Conference paper
  • First Online:
Operations Research Proceedings 2019

Abstract

In static-deterministic flow shop scheduling, solution algorithms are often tested by problem instances with uniformly distributed processing times. However, there are scheduling problems where a certain structure, variability or distribution of processing times appear. While the influence of these aspects on common objectives, like makespan and total completion time, has been discussed intensively, the efficiency-oriented objectives core idle time and core waiting time have not been taken into account so far. Therefore, a first computational study using complete enumeration is provided to analyze the influence of different structures of processing times on core idle time and core waiting time. The results show that in some cases an increased variability of processing times can lead to easier solvable problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benkel, K., Jørnsten, K., Leisten, R.: Variability aspects in flowshop scheduling systems. In: International Conference on Industrial Engineering and Systems Management (IESM) (2015), pp. 118–127

    Google Scholar 

  2. De Matta, R.: Minimizing the total waiting time of intermediate products in a manufacturing process. Int. Trans. Oper. Res. 26(3), 1096–1117 (2019)

    Google Scholar 

  3. Fernandez-Viagas, V., Framinan, J.M.: Reduction of permutation flowshop problems to single machine problems using machine dominance relations. Comput. Oper. Res. 77, 96–110 (2017)

    Google Scholar 

  4. Framinan, J.M., Perez-Gonzalez, P.: On heuristic solutions for the stochastic flowshop scheduling problem. Eur. J. Oper. Res. 246(2), 413–420 (2015)

    Google Scholar 

  5. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)

    Google Scholar 

  6. Juan, A.A., Barrios, B.B., Vallada, E., Riera, D., Jorba, J.: A simheuristic algorithm for solving the permutation flow shop problem with stochastic processing times. Simul. Model. Pract. Theory 46, 101–117 (2014)

    Google Scholar 

  7. Liu, W., Jin, Y., Price, M.: A new heuristic to minimize system idle time for flowshop scheduling. In: Poster presented at the 3rd Annual EPSRC Manufacturing the Future Conference, Glassgow (2014)

    Google Scholar 

  8. Monma, C.L., Kan, A.R.: A concise survey of efficiently solvable special cases of the permutation flow-shop problem. RAIRO Oper. Res. 17(2), 105–119 (1983)

    Google Scholar 

  9. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer (2016)

    Google Scholar 

  10. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22(1), 5–13 (1995)

    Google Scholar 

  11. Rinnooy Kan, A.H.G.: Machine Scheduling Problems: Classification, Complexity and Computation. Martinus Nijhoff, The Hague (1976)

    Google Scholar 

  12. Schollenberger, H.: Analyse und Verbesserung der Arbeitsabläufe in Betrieben der Reparaturlackierung, Univ.-Verlag Karlsruhe (2006)

    Google Scholar 

  13. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)

    Google Scholar 

  14. Vallada, E., Ruiz, R., Framinan, J.M.: New hard benchmark for flowshop scheduling problems minimising makespan. Eur. J. Oper. Res. 240(3), 666–677 (2015)

    Google Scholar 

  15. Watson, J.P., Barbulescu, L., Whitley, L.D., Howe, A.E.:. Contrasting structured and random permutation flow-shop scheduling problems: search-space topology and algorithm performance. INFORMS J. Comput. 14(2), 98–123 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Maassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maassen, K., Perez-Gonzalez, P. (2020). Diversity of Processing Times in Permutation Flow Shop Scheduling Problems. In: Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J. (eds) Operations Research Proceedings 2019. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-48439-2_67

Download citation

Publish with us

Policies and ethics