[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Holistic Assessment of Structure Discovery Capabilities of Clustering Algorithms

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11906))

Abstract

Existing cluster validity indices often possess a similar bias as the clustering algorithm they were introduced for, e.g. to determine the optimal number of clusters. We suggest an efficient and holistic assessment of the structure discovery capabilities of clustering algorithms based on three criteria. We determine the robustness or stability of cluster assignments and interpret it as the confidence of the clustering algorithm in its result. This information is then used to label the data and evaluate the consistency of the stability-assessment with the notion of a cluster as an area of dense and separated data. The resulting criteria of stability, structure and consistency provide interpretable means to judge the capabilities of clustering algorithms without the typical biases of prominent indices, including the judgment of a clustering tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, C.C., Reddy, C.K. (eds.): Data Clustering: Algorithms and Applications. Chapman & Hall, London (2013)

    Google Scholar 

  2. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Perez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recogn. 46, 243–256 (2013)

    Article  Google Scholar 

  3. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. - Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  4. Chouikhi, H., Charrad, M., Ghazzali, N.: A comparison study of clustering validity indices. In: Global Summit on Computer & Information Technology, pp. 1–4 (2015)

    Google Scholar 

  5. Davies, D., Bouldin, D.: A cluster separation measure. Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  6. Desgraupes, B.: Clustering indices. R-package ‘clusterCrit’ (2017)

    Google Scholar 

  7. Dunn, J.: Well separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  8. Everitt, B.S., Landau, S.: Cluster Analysis. Wiley, Hoboken (2011)

    Book  Google Scholar 

  9. Färber, I., et al.: On using class-labels in evaluation of clustering. In Proceedings of MultiClust 2010 (2010)

    Google Scholar 

  10. Fred, A., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 835–850 (2005)

    Article  Google Scholar 

  11. Halkidi, M., Vazirgiannis, M.: Clustering validity assessment: finding the optimal partitioning of a data set. In: IEEE International Conference on Data Mining, pp. 187–194 (2001)

    Google Scholar 

  12. Jain, A.K., Murty, N.M., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  13. Kaufman, L.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (2005)

    Google Scholar 

  14. Kuncheva, L.I., Vetrov, D.P.: Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1798–1808 (2006)

    Article  Google Scholar 

  15. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)

    Article  Google Scholar 

  16. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: Proceedings of International Conference on Data Mining, pp. 911–916 (2010)

    Google Scholar 

  17. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3(3), 379–379 (1995)

    Article  Google Scholar 

  18. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  19. Wiwie, C., Baumbach, J., Röttger, R.: Comparing the performance of biomedical clustering methods. Nat. Methods 12(11), 1033–1040 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Höppner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Höppner, F., Jahnke, M. (2020). Holistic Assessment of Structure Discovery Capabilities of Clustering Algorithms. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11906. Springer, Cham. https://doi.org/10.1007/978-3-030-46150-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46150-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46149-2

  • Online ISBN: 978-3-030-46150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics