[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Vehicle Feature Point Trajectory Clustering and Vehicle Behavior Analysis in Complex Traffic Scenes

  • Conference paper
  • First Online:
IoT as a Service (IoTaaS 2019)

Abstract

Video-based analysis technology has a wide range of applications in intelligent transportation system (ITS). Vehicle segmentation and behavior analysis has become an important research area in traffic video analysis. To solve the problem of 2D video detection technology in actual traffic video scenes, a bottom-up analysis method is employed to study the related technical problems. Firstly, M-BRISK descriptor algorithm is proposed for describing local feature points, which based on the method of original BRISK. Secondly, a 3D feature analysis method based on rigid motion constraints for vehicle trajectory is proposed. With the result of camera calibration and the preset back-projection plane, the 2D trajectory points can be back-projected to the 3D space, and the back projection data of the 2D image can be reconstructed in 3D space. Thirdly, similarity measure method is proposed for achieving the trajectory clustering. The experimental results show that the proposed method not only accelerates the speed of clustering method, but also improves the accuracy of trajectory clustering at some extent. Moreover, the vehicle motion information contained in the trajectory data can be analyzed to recognize vehicle behavior. All of these provide an important data foundation for vehicle abnormal behavior detection and the identification of traffic status levels in traffic scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  2. Barth, A., Franke, U.: Tracking oncoming and turning vehicles at intersections. In: International IEEE Conference on Intelligent Transportation Systems (2010)

    Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  4. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  5. Chang, C., Ansari, R.: Kernel particle filter for visual tracking. IEEE Sig. Process. Lett. 12(3), 242–245 (2005)

    Article  Google Scholar 

  6. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: IEEE Conference on Computer Vision and Pattern Recognition CVPR (2002)

    Google Scholar 

  7. Dai, Z., et al.: Video-based vehicle counting framework. IEEE Access 7, 64460–64470 (2019)

    Article  Google Scholar 

  8. Dan, B., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: International Conference on Pattern Recognition (2004)

    Google Scholar 

  9. Fang, Y., Wu, J., Huang, B.: 2D sparse signal recovery via 2D orthogonal matching pursuit. Sci. China Inf. Sci. 55(4), 889–897 (2012)

    Google Scholar 

  10. Ali, N.H., Hassan, G.M.: Kalman filter tracking. Int. J. Comput. Appl. 89(9), 15–18 (2014)

    Google Scholar 

  11. Jeon, G., Anisetti, M., Lee, J., Bellandi, V., Jeong, J.: Concept of linguistic variable-based fuzzy ensemble approach: application to interlaced HDTV sequences. IEEE Trans. Fuzzy Syst. 17(6), 1245–1258 (2009)

    Article  Google Scholar 

  12. Jeon, G., Anisetti, M., Wang, L., Damiani, E.: Locally estimated heterogeneity property and its fuzzy filter application for deinterlacing. Inf. Sci. Int. J. 354(C), 112–130 (2016)

    Google Scholar 

  13. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition. Image Vis. Comput. 14(8), 609–615 (1996)

    Article  Google Scholar 

  14. Kanhere, N.K., Birchfield, S.T.: A taxonomy and analysis of camera calibration methods for traffic monitoring applications. IEEE Trans. Intell. Transp. Syst. 11(2), 441–452 (2010)

    Article  Google Scholar 

  15. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: International Conference on Computer Vision (2011)

    Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  18. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2007)

    Google Scholar 

  19. Ojala, T., Harwood, I.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  20. Prasad, M., Fitzgibbon, A.W.: Single view reconstruction of curved surfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  21. Rosin, P.L.: Measuring Corner Properties. Elsevier (1999)

    Google Scholar 

  22. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2008)

    Article  Google Scholar 

  23. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  24. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision (2011)

    Google Scholar 

  25. Sivaraman, S., Trivedi, M.M.: Combining monocular and stereo-vision for real-time vehicle ranging and tracking on multilane highways. In: International IEEE Conference on Intelligent Transportation Systems (2011)

    Google Scholar 

  26. Sumpter, N., Bulpitt, A.: Learning spatio-temporal patterns for predicting object behaviour. Image Vis. Comput. 18(9), 697–704 (2000)

    Article  Google Scholar 

  27. Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pami 32(5), 815–30 (2010)

    Article  Google Scholar 

  28. Wang, X., Song, H., Fang, Y., Cui, H.: Novel discriminative method for illegal parking and abandoned objects. J. Adv. Comput. Intell. Intell. Inform. 22, 907–914 (2018)

    Google Scholar 

  29. Wang, X., Song, H., Guan, Q., Cui, H., Zhang, Z., Liu, H.: Vehicle motion segmentation using rigid motion constraints in traffic video. Sustain. Cities Soc. 42, 547–557 (2018)

    Google Scholar 

  30. Wang, Y., Papageorgiou, M.: Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transp. Res. Part B 39(2), 141–167 (2007)

    Article  Google Scholar 

  31. Weiming, H., Dan, X., Tieniu, T., Steve, M.: Learning activity patterns using fuzzy self-organizing neural network. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc. 34(3), 1618 (2004)

    Article  Google Scholar 

  32. Yan, K., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of CVPR, vol. 2, no. 2, pp. 506–513 (2004)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China under Grants 61801414, Natural Science Foundation of Shandong Province under Grants ZR2017QF006, the Major Science and Technology Innovation Projects in Shandong Province 2019JZZY020131, the China Postdoctoral Science Foundation under Grant 2019T120732.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Zhao, J., Wang, Y., Lv, J., Yan, W. (2020). Vehicle Feature Point Trajectory Clustering and Vehicle Behavior Analysis in Complex Traffic Scenes. In: Li, B., Zheng, J., Fang, Y., Yang, M., Yan, Z. (eds) IoT as a Service. IoTaaS 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 316. Springer, Cham. https://doi.org/10.1007/978-3-030-44751-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44751-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44750-2

  • Online ISBN: 978-3-030-44751-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics