Abstract
This paper presents an implementation of a Convolutional Neural Network (CNN) algorithm using a linear array of full mesh dynamically and partially reconfigurable Coarse Grained Reconfigurable Arrays (CGRAs). Accelerating CNNs using GPUs and FPGAs is more common and there are few works that address the topic of CNN acceleration using CGRAs. Using CGRAs can bring size and power advantages compared to GPUs and FPGAs. The contribution of this paper is to study the performance of full mesh dynamically and partially reconfigurable CGRAs for CNN acceleration. The CGRA used is an improved version of the previously published Versat CGRA, adding multi CGRA core support and pre-silicon configurability. The results show that the proposed CGRA is as easy to program as the original full mesh Versat CGRA, and that its performance and power consumption scale linearly with the number of instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
RISC-V: The Free and Open RISC Instruction Set Architecture. https://riscv.org/
PicoRV32 - a RISC-V CPU. https://github.com/cliffordwolf/picorv32 (2019)
Baumgarte, V., Ehlers, G., May, F., Nückel, A., Vorbach, M., Weinhardt, M.: PACT XPP - a self-reconfigurable data processing architecture. J. Supercomput. 26(2), 167–184 (2003). https://doi.org/10.1023/A:1024499601571
De Sutter, B., Raghavan, P., Lambrechts, A.: Coarse-grained reconfigurable array architectures. In: Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J. (eds.) Handbook of Signal Processing Systems, pp. 449–484. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-6345-1_17
Ebeling, C., Cronquist, D.C., Franklin, P.: RaPiD — reconfigurable pipelined datapath. In: Hartenstein, R.W., Glesner, M. (eds.) FPL 1996. LNCS, vol. 1142, pp. 126–135. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61730-2_13
Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: Mapping applications onto reconfigurable kressarrays. In: Lysaght, P., Irvine, J., Hartenstein, R. (eds.) FPL 1999. LNCS, vol. 1673, pp. 385–390. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48302-1_42
Heysters, P.M., Smit, G.J.M.: Mapping of DSP algorithms on the MONTIUM architecture. In: Proceedings of the International Parallel and Distributed Processing Symposium, p. 6, April 2003
Lopes, J.D., de Sousa, J.T.: Versat, a minimal coarse-grain reconfigurable array. In: Dutra, I., Camacho, R., Barbosa, J., Marques, O. (eds.) VECPAR 2016. LNCS, vol. 10150, pp. 174–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61982-8_17
Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkest, D., Lauwereins, R.: Architecture exploration for a reconfigurable architecture template. Des. Test Comput. 22(2), 90–101 (2005)
Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: DRESC: a retargetable compiler for coarse-grained reconfigurable architectures (2002)
Hemani, A., Shami, M.A.: Partially reconfigurable interconnection network for dynamically reprogrammable resource array (2009)
Wijtvliet, M., Waeijen, L., Corporaal, H.: Coarse grained reconfigurable architectures in the past 25 years: overview and classification (2016)
Acknowledgments
This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) under projects PTDC/EEI-HAC/30848/2017 and UIDB/50021/2020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mário, V., Lopes, J.D., Véstias, M., de Sousa, J.T. (2020). Implementing CNNs Using a Linear Array of Full Mesh CGRAs. In: Rincón, F., Barba, J., So, H., Diniz, P., Caba, J. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science(), vol 12083. Springer, Cham. https://doi.org/10.1007/978-3-030-44534-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-44534-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44533-1
Online ISBN: 978-3-030-44534-8
eBook Packages: Computer ScienceComputer Science (R0)