[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Implementing CNNs Using a Linear Array of Full Mesh CGRAs

  • Conference paper
  • First Online:
Applied Reconfigurable Computing. Architectures, Tools, and Applications (ARC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12083))

Included in the following conference series:

Abstract

This paper presents an implementation of a Convolutional Neural Network (CNN) algorithm using a linear array of full mesh dynamically and partially reconfigurable Coarse Grained Reconfigurable Arrays (CGRAs). Accelerating CNNs using GPUs and FPGAs is more common and there are few works that address the topic of CNN acceleration using CGRAs. Using CGRAs can bring size and power advantages compared to GPUs and FPGAs. The contribution of this paper is to study the performance of full mesh dynamically and partially reconfigurable CGRAs for CNN acceleration. The CGRA used is an improved version of the previously published Versat CGRA, adding multi CGRA core support and pre-silicon configurability. The results show that the proposed CGRA is as easy to program as the original full mesh Versat CGRA, and that its performance and power consumption scale linearly with the number of instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/

  2. RISC-V: The Free and Open RISC Instruction Set Architecture. https://riscv.org/

  3. PicoRV32 - a RISC-V CPU. https://github.com/cliffordwolf/picorv32 (2019)

  4. Baumgarte, V., Ehlers, G., May, F., Nückel, A., Vorbach, M., Weinhardt, M.: PACT XPP - a self-reconfigurable data processing architecture. J. Supercomput. 26(2), 167–184 (2003). https://doi.org/10.1023/A:1024499601571

    Article  MATH  Google Scholar 

  5. De Sutter, B., Raghavan, P., Lambrechts, A.: Coarse-grained reconfigurable array architectures. In: Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J. (eds.) Handbook of Signal Processing Systems, pp. 449–484. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-6345-1_17

    Chapter  Google Scholar 

  6. Ebeling, C., Cronquist, D.C., Franklin, P.: RaPiD — reconfigurable pipelined datapath. In: Hartenstein, R.W., Glesner, M. (eds.) FPL 1996. LNCS, vol. 1142, pp. 126–135. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61730-2_13

    Chapter  Google Scholar 

  7. Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: Mapping applications onto reconfigurable kressarrays. In: Lysaght, P., Irvine, J., Hartenstein, R. (eds.) FPL 1999. LNCS, vol. 1673, pp. 385–390. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48302-1_42

    Chapter  Google Scholar 

  8. Heysters, P.M., Smit, G.J.M.: Mapping of DSP algorithms on the MONTIUM architecture. In: Proceedings of the International Parallel and Distributed Processing Symposium, p. 6, April 2003

    Google Scholar 

  9. Lopes, J.D., de Sousa, J.T.: Versat, a minimal coarse-grain reconfigurable array. In: Dutra, I., Camacho, R., Barbosa, J., Marques, O. (eds.) VECPAR 2016. LNCS, vol. 10150, pp. 174–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61982-8_17

    Chapter  Google Scholar 

  10. Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkest, D., Lauwereins, R.: Architecture exploration for a reconfigurable architecture template. Des. Test Comput. 22(2), 90–101 (2005)

    Article  Google Scholar 

  11. Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: DRESC: a retargetable compiler for coarse-grained reconfigurable architectures (2002)

    Google Scholar 

  12. Hemani, A., Shami, M.A.: Partially reconfigurable interconnection network for dynamically reprogrammable resource array (2009)

    Google Scholar 

  13. Wijtvliet, M., Waeijen, L., Corporaal, H.: Coarse grained reconfigurable architectures in the past 25 years: overview and classification (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) under projects PTDC/EEI-HAC/30848/2017 and UIDB/50021/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João D. Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mário, V., Lopes, J.D., Véstias, M., de Sousa, J.T. (2020). Implementing CNNs Using a Linear Array of Full Mesh CGRAs. In: Rincón, F., Barba, J., So, H., Diniz, P., Caba, J. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science(), vol 12083. Springer, Cham. https://doi.org/10.1007/978-3-030-44534-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44534-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44533-1

  • Online ISBN: 978-3-030-44534-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics