[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12101))

Included in the following conference series:

  • 709 Accesses

Abstract

Semantic GP is a promising approach that introduces semantic awareness during genetic evolution. This paper presents a new Semantic GP approach based on Dynamic Target (SGP-DT) that divides the search problem into multiple GP runs. The evolution in each run is guided by a new (dynamic) target based on the residual errors. To obtain the final solution, SGP-DT combines the solutions of each run using linear scaling. SGP-DT presents a new methodology to produce the offspring that does not rely on the classic crossover. The synergy between such a methodology and linear scaling yields to final solutions with low approximation error and computational cost. We evaluate SGP-DT on eight well-known data sets and compare with \(\epsilon \)-lexicase, a state-of-the-art evolutionary technique. SGP-DT achieves small RMSE values, on average 23.19% smaller than the one of \(\epsilon \)-lexicase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(f(x)=10/(5 + \sum _{i=1}^{5} (x_i -3)^2)\).

  2. 2.

    https://github.com/EpistasisLab/ellyn.

  3. 3.

    calculated with \(((M_T- M_D)/M_T) \cdot 100\), where \(M_D\) is the median RMSE of SGP-DT and \(M_T\) is the one of the competing technique.

  4. 4.

    for readability reasons we omitted 4 out-layers for lasso, 13 for \(\epsilon \)-lexicase, 30 for SGP-DT, 30 for DT-NM and 35 for DT-EM.

References

  1. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Program. Evolvable Mach. 15(2), 195–214 (2014). https://doi.org/10.1007/s10710-013-9210-0

    Article  Google Scholar 

  2. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Program. Evolvable Mach. 16(3), 351–386 (2015). https://doi.org/10.1007/s10710-014-9239-8

    Article  Google Scholar 

  3. O’Neill, M.: Semantic methods in genetic programming. Genet. Program. Evolvable Mach. 17(1), 3–4 (2016). https://doi.org/10.1007/s10710-015-9254-4

    Article  Google Scholar 

  4. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic programming. In: O’Neill, M., et al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78671-9_12

    Chapter  Google Scholar 

  5. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3

    Chapter  Google Scholar 

  6. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_7

    Chapter  Google Scholar 

  7. Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point crossover and point mutation. Evol. Comput. 6(3), 231–252 (1998)

    Article  Google Scholar 

  8. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  Google Scholar 

  9. La Cava, W., Spector, L., Danai, K.: Epsilon-Lexicase selection for regression. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2016), pp. 741–748 (2016)

    Google Scholar 

  10. Nicolau, M., Agapitos, A.: On the effect of function set to the generalisation of symbolic regression models. In: Proceedings of the Companion of the Conference on Genetic and Evolutionary Computation (GECCO 2018), pp. 272–273 (2018)

    Google Scholar 

  11. Ruberto, S., Vanneschi, L., Castelli, M.: Genetic programming with semantic equivalence classes. Swarm Evol. Comput. 44, 453–469 (2019)

    Article  Google Scholar 

  12. Keijzer, M.: Scaled symbolic regression. Genet. Program. Evolvable Mach. 5(3), 259–269 (2004). https://doi.org/10.1023/B:GENP.0000030195.77571.f9

    Article  Google Scholar 

  13. Gerules, G., Janikow, C.: A survey of modularity in genetic programming. In: the IEEE Congress on Evolutionary Computation (CEC 2016), pp. 5034–5043 (2016)

    Google Scholar 

  14. Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genet. Program. Evolvable Mach. 14(1), 31–63 (2013). https://doi.org/10.1007/s10710-012-9172-7

    Article  Google Scholar 

  15. Krawiec, K., Liskowski, P.: Automatic derivation of search objectives for test-based genetic programming. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 53–65. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1_5

    Chapter  MATH  Google Scholar 

  16. Liskowski, P., Krawiec, K.: Online discovery of search objectives for test-based problems. Evol. Comput. 25(3), 375–406 (2017)

    Article  Google Scholar 

  17. Otero, F.E.B., Johnson, C.G.: Automated problem decomposition for the boolean domain with genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 169–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_15

    Chapter  Google Scholar 

  18. Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed take on semantic GP. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 935–942 (2014)

    Google Scholar 

  19. Arnaldo, I., Krawiec, K., O’Reilly, U.M.: Multiple regression genetic programming. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 879–886 (2014)

    Google Scholar 

  20. Ruberto, S., Vanneschi, L., Castelli, M., Silva, S.: ESAGP – a semantic GP framework based on alignment in the error space. In: Nicolau, M., et al. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 150–161. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44303-3_13

    Chapter  Google Scholar 

  21. Vanneschi, L., Castelli, M., Scott, K., Trujillo, L.: Alignment-based genetic programming for real life applications. Swarm Evol. Comput. 44, 840–851 (2019)

    Article  Google Scholar 

  22. Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to nonlinear system modeling. Neural Comput. Appl. 21(1), 171–187 (2012)

    Article  Google Scholar 

  23. Oliveira, L.O.V.B., Otero, F.E.B., Pappa, G.L., Albinati, J.: Sequential symbolic regression with genetic programming. In: Riolo, R., Worzel, W.P., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XII. GEC, pp. 73–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16030-6_5

    Chapter  Google Scholar 

  24. Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: Wave: a genetic programming approach to divide and conquer. In: Proceedings of the Companion of the Conference on Genetic and Evolutionary Computation. (GECCO 2015), pp. 1435–1436 (2015)

    Google Scholar 

  25. Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: A new wave: a dynamic approach to genetic programming. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2016), pp. 757–764 (2016)

    Google Scholar 

  26. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007)

    Google Scholar 

  27. White, D.R., Mcdermott, J., Castelli, M., et al.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013). https://doi.org/10.1007/s10710-012-9177-2

    Article  Google Scholar 

  28. Cava, W.L., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-objective analysis of Lexicase selection and \(\varepsilon \)-Lexicase selection. Evol. Comput. 27, 1–28 (2018)

    Google Scholar 

  29. Orzechowski, P., Cava, W.L., Moore, J.H.: Where are we now?: A large benchmark study of recent symbolic regression methods. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2018), pp. 1183–1190 (2018)

    Google Scholar 

  30. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S. Geometric semantic genetic programming with local search. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2015), pp. 999–1006 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Ruberto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruberto, S., Terragni, V., Moore, J.H. (2020). SGP-DT: Semantic Genetic Programming Based on Dynamic Targets. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds) Genetic Programming. EuroGP 2020. Lecture Notes in Computer Science(), vol 12101. Springer, Cham. https://doi.org/10.1007/978-3-030-44094-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44094-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44093-0

  • Online ISBN: 978-3-030-44094-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics