[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Survey on Vehicular Fog Computing: Motivation, Architectures, Taxonomy, and Issues

  • Conference paper
  • First Online:
Web, Artificial Intelligence and Network Applications (WAINA 2020)

Abstract

Fog computing is a promising solution that was conceived to overcome the delay constraints and excessive use of radio resources required to access the cloud. It consists in bringing the cloud to the network edge to reduce latency and optimize the bandwidth usage. Recently, this concept has been extended to vehicular networks, named vehicular fog computing. A set of architectures were proposed to investigate the fog paradigm in the vehicular context. In this paper, we overview the different vehicular fog architectures. Then, we suggest a taxonomy of vehicular fog computing based on a set of parameters. Finally, we discuss challenges that affect its deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blanter, A., Holman, M.: Internet of Things 2020: a glimpse into the future (2020). https://www.atkearney.com/documents/4634214/6398631/AT+Kearney_Internet+of+Things

  2. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 19(3), 1657–1681 (2017)

    Article  Google Scholar 

  3. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM (2012)

    Google Scholar 

  4. Abdelhamid, S., Hassanein, H., Takahara, G.: Vehicle as a resource (VaaR). IEEE Network 29(1), 12–17 (2015)

    Article  Google Scholar 

  5. Hou, X., Li, Y., Chen, M., Di, W., Jin, D., Chen, S.: Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65(6), 3860–3873 (2016)

    Article  Google Scholar 

  6. Huang, C., Lu, R., Choo, K.-K.R.: Vehicular fog computing: architecture, use case, and security and forensic challenges. IEEE Commun. Mag. 55(11), 105–111 (2017)

    Article  Google Scholar 

  7. Kai, K., Cong, W., Tao, L.: Fog computing for vehicular ad-hoc networks: paradigms, scenarios, and issues. J. China Univ. Posts Telecommun. 23(2), 56–96 (2016)

    Article  Google Scholar 

  8. Raza, S., Wang, S., Ahmed, M., Anwar, M.R.: A survey on vehicular edge computing: architecture, applications, technical issues, and future directions. Wirel. Commun. Mob. Comput. 2019, 1–19 (2019)

    Google Scholar 

  9. Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H., Zedan, H.: A comprehensive survey on vehicular ad hoc network. J. Netw. Comput. Appl. 37, 380–392 (2014)

    Article  Google Scholar 

  10. Lai, Y., Yang, F., Zhang, L., Lin, Z.: Distributed public vehicle system based on fog nodes and vehicular sensing. IEEE Access 6, 22011–22024 (2018)

    Article  Google Scholar 

  11. Xiao, L., Zhuang, W., Zhou, S., Chen, C.: Learning while offloading: task offloading in vehicular edge computing network. In: Learning-Based VANET Communication and Security Techniques, pp. 49–77. Springer (2019)

    Google Scholar 

  12. Wang, Z., Zhong, Z., Ni, M.: Application-aware offloading policy using SMDP in vehicular fog computing systems. In: IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2018)

    Google Scholar 

  13. Xiao, Y., Zhu, C.: Vehicular fog computing: vision and challenges. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 6–9. IEEE (2017)

    Google Scholar 

  14. Lee, E.-K., Gerla, M., Pau, G., Lee, U., Lim, J.-H.: Internet of vehicles: from intelligent grid to autonomous cars and vehicular fogs. Int. J. Distrib. Sens. Netw. 12(9), 1–14 (2016)

    Article  Google Scholar 

  15. Zhu, C., Pastor, G., Xiao, Y., Ylajaaski, A.: Vehicular fog computing for video crowdsourcing: applications, feasibility, and challenges. IEEE Commun. Mag. 56(10), 58–63 (2018)

    Article  Google Scholar 

  16. Pereira, J., Ricardo, L., Luís, M., Senna, C., Sargento, S.: Assessing the reliability of fog computing for smart mobility applications in VANETs. Future Gener. Comput. Syst. 94, 317–332 (2019)

    Article  Google Scholar 

  17. Mekki, T., Jabri, I., Rachedi, A., Jemaa, M.B.: Towards multi-access edge based vehicular fog computing architecture. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)

    Google Scholar 

  18. Kim, O.T.T., Tri, N.D., Tran, N.H., Hong, C.S., et al.: A shared parking model in vehicular network using fog and cloud environment. In: 2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 321–326. IEEE (2015)

    Google Scholar 

  19. Hu, Y.-L., Wang, C.-Y., Kao, C.-K., Chang, S.-Y., Wei, D.S., Huang, Y., Chen, Y., Kuo, S.-Y.: Toward fog-based event-driven services for internet of vehicles: design and evaluation. In: International Conference on Internet of Vehicles, pp. 201–212. Springer (2017)

    Google Scholar 

  20. Grover, J., Jain, A., Singhal, S., Yadav, A.: Real-time VANET applications using fog computing. In: Proceedings of First International Conference on Smart System, Innovations and Computing, pp. 683–691. Springer (2018)

    Google Scholar 

  21. Ni, J., Zhang, A., Lin, X., Shen, X.S.: Security, privacy, and fairness in fog-based vehicular crowdsensing. IEEE Commun. Mag. 55(6), 146–152 (2017)

    Article  Google Scholar 

  22. Huang, B., Cheng, X., Cheng, W.: Meet-fog for accurate distribution of negative messages in VANET. In: Proceedings of the Workshop on Smart Internet of Things, pp. 1–5. ACM (2017)

    Google Scholar 

  23. Li, M., Zhu, L., Zhang, Z., Du, X., Guizani, M.: PROS: a privacy-preserving route-sharing service via vehicular fog computing. IEEE Access 6, 66188–66197 (2018)

    Article  Google Scholar 

  24. Chekired, D.A., Togou, M.A., Khoukhi, L.: Hierarchical wireless vehicular fog architecture: a case study of scheduling electric vehicle energy demands. IEEE Veh. Technol. Mag. 13(4), 116–126 (2018)

    Article  Google Scholar 

  25. Nobre, J.C., de Souza, A.M., Rosário, D., Both, C., Villas, L.A., Cerqueira, E., Braun, T., Gerla, M.: Vehicular software-defined networking and fog computing: integration and design principles. Ad Hoc Netw. 82, 172–181 (2019)

    Article  Google Scholar 

  26. Birhanie, H.M., Messous, M.A., Senouci, S.M., Aglzim, E.H., Ahmed, A.M.: MDP-based resource allocation scheme towards a vehicular fog computing with energy constraints. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)

    Google Scholar 

  27. Kui, X., Sun, Y., Zhang, S., Li, Y.: Characterizing the capability of vehicular fog computing in large-scale urban environment. Mob. Netw. Appl. 23(4), 1050–1067 (2018)

    Article  Google Scholar 

  28. Wang, L., Liu, G., Sun, L.: A secure and privacy-preserving navigation scheme using spatial crowdsourcing in fog-based VANETs. Sensors 17(4), 668 (2017)

    Article  Google Scholar 

  29. Yao, Y., Chang, X., Mišić, J., Mišić, V.: Reliable and secure vehicular fog service provision. IEEE Internet Things J. 6(1), 734–743 (2018)

    Article  Google Scholar 

  30. Lin, F., Zhou, Y., Pau, G., Collotta, M.: Optimization-oriented resource allocation management for vehicular fog computing. IEEE Access 6, 69294–69303 (2018)

    Article  Google Scholar 

  31. Yu, Y.-T., Gerla, M.: Information-centric VANETs: a study of content routing design alternatives. In: International Conference on Computing, Networking and Communications (ICNC), pp. 1–5. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tesnim Mekki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mekki, T., Jabri, I., Chaari, L., Rachedi, A. (2020). A Survey on Vehicular Fog Computing: Motivation, Architectures, Taxonomy, and Issues. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent Systems and Computing, vol 1150. Springer, Cham. https://doi.org/10.1007/978-3-030-44038-1_15

Download citation

Publish with us

Policies and ethics