[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Robust Vision-Based Autonomous Navigation, Mapping and Landing for MAVs at Night

  • Conference paper
  • First Online:
Proceedings of the 2018 International Symposium on Experimental Robotics (ISER 2018)

Abstract

This paper is about vision-based autonomous flight of MAVs at night. Despite it being dark almost half of the time, most of the work to date has addressed only daytime operations. Enabling autonomous night-time operation of MAVs with low SWaP on-board sensing capabilities is still an open problem in current robotics research. In this paper, we take a step in this direction and introduce a robust vision-based perception system using thermal-infrared cameras. We present this in the context of safe autonomous landing on rooftop-like structures, and demonstrate the efficacy of our proposed system through extensive real-world flight experiments in outdoor environments at night.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barfoot, T.D., McManus, C., Anderson, S., Dong, H., Beerepoot, E., Tong, C.H., Furgale, P., Gammell, J.D., Enright, J.: Into darkness: visual navigation based on a lidar-intensity-image pipeline. In: Robotics Research, pp. 487–504. Springer (2016)

    Google Scholar 

  2. Borges, P.V.K., Vidas, S.: Practical infrared visual odometry. IEEE Trans. Intell. Transp. Syst. 17(8), 2205–2213 (2016)

    Article  Google Scholar 

  3. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  4. Brunner, C., Peynot, T., Vidal-Calleja, T., Underwood, J.: Selective combination of visual and thermal imaging for resilient localization in adverse conditions: day and night, smoke and fire. J. Field Robot. 30(4), 641–666 (2013)

    Article  Google Scholar 

  5. Burian, F., Kocmanova, P., Zalud, L.: Robot mapping with range camera, CCD cameras and thermal imagers. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 200–205 (2014)

    Google Scholar 

  6. Chen, L., Sun, L., Yang, T., Fan, L., Huang, K., Xuanyuan, Z.: RGB-T SLAM: a flexible slam framework by combining appearance and thermal information. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5682–5687 (2017)

    Google Scholar 

  7. Daftry, S., Zeng, S., Khan, A., Dey, D., Melik-Barkhudarov, N., Bagnell, J.A., Hebert, M.: Robust monocular flight in cluttered outdoor environments. arXiv preprint arXiv:1604.04779 (2016)

  8. Delmerico, J., Scaramuzza, D.: A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots. Memory 10, 20 (2018)

    Google Scholar 

  9. Dey, D., Shankar, K.S., Zeng, S., Mehta, R., Agcayazi, M.T., Eriksen, C., Daftry, S., Hebert, M., Bagnell, J.A.: Vision and learning for deliberative monocular cluttered flight. In: Proceedings of the International Conference on Field and Service Robotics (FSR) (2015)

    Google Scholar 

  10. Dubbelman, G., van der Mark, W., van den Heuvel, J.C., Groen, F.C.: Obstacle detection during day and night conditions using stereo vision. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 109–116 (2007)

    Google Scholar 

  11. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)

    Article  Google Scholar 

  12. Fankhauser, P., Bloesch, M., Gehring, C., Hutter, M., Siegwart, R.: Robot-centric elevation mapping with uncertainty estimates. In: Mobile Service Robotics, pp. 433–440. World Scientific (2014)

    Google Scholar 

  13. Forster, C., Faessler, M., Fontana, F., Werlberger, M., Scaramuzza, D.: Continuous on-board monocular-vision-based elevation mapping applied to autonomous landing of micro aerial vehicles. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 111–118 (2015)

    Google Scholar 

  14. Gade, R., Moeslund, T.B.: Thermal cameras and applications: a survey. Mach. Vis. Appl. 25(1), 245–262 (2014)

    Article  Google Scholar 

  15. Han, J., Bhanu, B.: Human activity recognition in thermal infrared imagery. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops 2005 CVPR Workshops, p. 17 (2005)

    Google Scholar 

  16. Husain, A., Jones, H., Kannan, B., Wong, U., Pimentel, T., Tang, S., Daftry, S., Huber, S., Whittaker, W.L.: Mapping planetary caves with an autonomous, heterogeneous robot team. In: Aerospace Conference, pp. 1–13. IEEE (2013)

    Google Scholar 

  17. Mascarich, F., Khattak, S., Papachristos, C., Alexis, K.: A multi-modal mapping unit for autonomous exploration and mapping of underground tunnels. In: 2018 IEEE Aerospace Conference, pp. 1–7 (2018)

    Google Scholar 

  18. Milford, M.J., Wyeth, G.F.: SeqSLAM: visual route-based navigation for sunny summer days and stormy winter nights. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1643–1649. IEEE (2012)

    Google Scholar 

  19. Mouats, T., Aouf, N., Chermak, L., Richardson, M.A.: Thermal stereo odometry for UAVs. IEEE Sens. J. 15(11), 6335–6347 (2015)

    Article  Google Scholar 

  20. Nelson, P., Churchill, W., Posner, I., Newman, P.: From dusk till dawn: localisation at night using artificial light sources. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5245–5252 (2015)

    Google Scholar 

  21. Papachristos, C., Mascarich, F., Alexis, K.: Thermal-inertial localization for autonomous navigation of aerial robots through obscurants. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 394–399 (2018)

    Google Scholar 

  22. Pizzoli, M., Forster, C., Scaramuzza, D.: Remode: probabilistic, monocular dense reconstruction in real time. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2609–2616. IEEE (2014)

    Google Scholar 

  23. Qin, T., Li, P., Shen, S.: VINS-Mono: a robust and versatile monocular visual-inertial state estimator. arXiv preprint arXiv:1708.03852 (2017)

  24. Shen, S., Michael, N., Kumar, V.: Autonomous indoor 3D exploration with a micro-aerial vehicle. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 9–15. IEEE (2012)

    Google Scholar 

  25. Vidas, S., Sridharan, S.: Hand-held monocular slam in thermal-infrared. In: 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 859–864 (2012)

    Google Scholar 

  26. Wu, C.: Towards linear-time incremental structure from motion. In: 2013 International Conference on 3D Vision-3DV 2013, pp. 127–134. IEEE (2013)

    Google Scholar 

  27. Zach, C., Gallup, D., Frahm, J.M.: Fast gain-adaptive KLT tracking on the GPU. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2008, pp. 1–7. IEEE (2008)

    Google Scholar 

Download references

Acknowledgement

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyansh Daftry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daftry, S. et al. (2020). Robust Vision-Based Autonomous Navigation, Mapping and Landing for MAVs at Night. In: Xiao, J., Kröger, T., Khatib, O. (eds) Proceedings of the 2018 International Symposium on Experimental Robotics. ISER 2018. Springer Proceedings in Advanced Robotics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-33950-0_21

Download citation

Publish with us

Policies and ethics