[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Performance of Human Proposed Equations, Genetic Programming Equations, and Artificial Neural Networks in a Real-Time Color Labeling Assistant for the Colorblind

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2019)

Abstract

Sight is the most critical sense because of its worth in human life; humans use it to guarantee their safeness, to move around, to identify persons, objects, among other activities. The eyes use two kinds of cells in visual perception, rods for luminosity and cones for color. Colorblindness is a mild disability that affects color perception in close to 10% of the world population. Partial solutions for the colorblind include glasses that increase the distance between colors, avoiding confusing regions when suffering mild colorblindness. Other alternatives include special symbols for labeling objects and text descriptions, but there is not a definitive solution. Alternatively, computer vision has developed some assistants for the colorblind based on color classification, including applications that highlight confusing regions or identify colors selected by the user. Recently, artificial intelligence, together with parallel computing, has become a good alternative in vision assistance, but there are several alternatives with different schemes for performing color classification, those include heuristically tuned human proposed equations, computer-generated equations, and Artificial Neural Networks (ANN’s), among others. In this paper, a labeling color assistant for the colorblind is developed using color classification with heuristically (GA and PSO algorithms) tuned proposed equations, genetic programming equations, and ANN’s. As a result of this research, is determined the best structure for color classification, based on the accuracy and processing time in a CUDA kernel, so that be possible a real-time labeling system for the colorblind with full high definition images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. García-Porrero, J.A., Hurlé, J.M., García-Porrero Alonso, J.: Anatomía humana. McGraw-Hill/Interamericana de España (2005)

    Google Scholar 

  2. Rivera, M.M., Díaz, A.P., Reich, J.C., et al.: Augmented reality labels for security signs based on color segmentation with PSO for assisting colorblind people. Int. J. Comb. Optim. Probl. Inform. 10, 7–20 (2019)

    Google Scholar 

  3. Kato, C.: Comprehending color images for color barrier-free via factor analysis technique. In: 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 478–483. IEEE (2013)

    Google Scholar 

  4. Tanaka, K.D.: A colour to birds and to humans: why is it so different? J. Ornithol. 156, 433–440 (2015). https://doi.org/10.1007/s10336-015-1234-1

    Article  Google Scholar 

  5. Bailey, J.D.: Color Vision Deficiency: A Concise Tutorial for Optometry and Ophthalmology, 1st edn. Richmond Products (2012)

    Google Scholar 

  6. Montes Rivera, M., Padilla Díaz, A., Ponce Gallegos, J.C., et al.: Recoloring Ishihara Plates with PSO algorithm and Proposed Equations. In: Robótica y Computación. Investigación y Desarrollo., 1st edn. Tecnológico Nacional de México, La Paz Baja California Sur, México, pp. 174–180 (2019)

    Google Scholar 

  7. Neiva, M.: ColorADD, color identification system (2018). http://www.coloradd.net/imgs/ColorADDAboutUs_2015V1.pdf

  8. Liu, B., Wang, M., Yang, L., et al.: Efficient image and video re-coloring for colorblindness. In: 2009 IEEE International Conference on Multimedia and Expo, pp. 906–909. IEEE (2009)

    Google Scholar 

  9. Huang, J.-B., Chen, C.-S., Jen, T.-C., Wang, S.-J.: Image recolorization for the colorblind. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1161–1164. IEEE (2009)

    Google Scholar 

  10. Huang, C.-R., Chiu, K.-C., Chen, C.-S.: Temporal color consistency-based video reproduction for dichromats. IEEE Trans. Multimed. 13, 950–960 (2011). https://doi.org/10.1109/TMM.2011.2135844

    Article  Google Scholar 

  11. Lai, C.-L., Chang, S.-W., Sheen, J.: An integrated portable vision assistant agency for the visual impaired people. In: 2009 IEEE International Conference on Control and Automation, pp. 2311–2316. IEEE (2009)

    Google Scholar 

  12. Ohkubo, T., Kobayashi, K., Watanabe, K., Kurihara, Y.: Development of a time-sharing-based color-assisted vision system for persons with color-vision deficiency. In: Proceedings of SICE Annual Conference 2010, pp. 2499–2503 (2010)

    Google Scholar 

  13. Tanuwidjaja, E., Huynh, D., Koa, K., et al.: Chroma. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing - UbiComp 2014 Adjunct, pp. 799–810. ACM Press, New York (2014)

    Google Scholar 

  14. Chung, M., Choo, H.: A real-time color-matching method based on smartphones for color-blind people. In: Eighth International Conference on Mob Mobile Ubiquitous Computing, Systems, Services Technologies, UBICOMM 2014, pp. 184–188 (2014)

    Google Scholar 

  15. Brettel, H., Viénot, F., Mollon, J.D.: Computerized simulation of color appearance for dichromats. J. Opt. Soc. Am. A 14, 2647 (1997). https://doi.org/10.1364/JOSAA.14.002647

    Article  Google Scholar 

  16. Goswami, T.: Impact of deep learning in image processing and computer vision. In: Anguera, J., Satapathy, S.C., Bhateja, V., Sunitha, K.V.N. (eds.) Microelectronics, Electromagnetics and Telecommunications. LNEE, vol. 471, pp. 475–485. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7329-8_48

    Chapter  Google Scholar 

  17. Ku, J., Harakeh, A., Waslander, S.L.: In Defense of Classical Image Processing: Fast Depth Completion on the CPU (2018)

    Google Scholar 

  18. Rivera Montes, M., Padilla Díaz, A., Ponce Gallegos, J.C.: Comparative between RGB and HSV color representations for color segmentation when it is applied with artificial neural networks. In: en C. Ma. de Lourdes Sánchez Guerrero Dra. Alma Rosa García Gaona DFJÁR (eds.) Avances en las Tecnologías de la Información. ALFA-OMEGA, pp. 620–638 (2016)

    Google Scholar 

  19. Montes, M., Padilla, A., Canul, J., Ponce, J., Ochoa, A.: Comparative of effectiveness when classifying colors using RGB image representation with PSO with time decreasing inertial coefficient and GA algorithms as classifiers. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. SCI, vol. 749, pp. 527–546. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71008-2_38

    Chapter  Google Scholar 

  20. Maučec, M.S., Brest, J.: A review of the recent use of Differential Evolution for Large-Scale Global Optimization: An analysis of selected algorithms on the CEC 2013 LSGO benchmark suite. Swarm Evol. Comput. (2018). https://doi.org/10.1016/j.swevo.2018.08.005

  21. Nasiri, J.A., Yazdi, H.S., Moulavi, M.A., et al.: A PSO tuning approach for lip detection on color images. In: Proceedings - EMS 2008, European Modelling Symposium, 2nd UKSim European Symposium on Computer Modelling and Simulation, pp. 278–282. IEEE (2008)

    Google Scholar 

  22. Vijayanandh, R., Balakrishnan, G.: Performance measure of human skin region detection based on hybrid particle swarm optimization. Int. J. Comput. Theory Eng. 4, 857 (2012)

    Article  Google Scholar 

  23. Amelio, A., Pizzuti, C.: A genetic algorithm for color image segmentation. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 314–323. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_32

    Chapter  Google Scholar 

  24. Bejarbaneh, B.Y., Bejarbaneh, E.Y., Amin, M.F.M., et al.: Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems. Bull. Eng. Geol. Environ. 77, 345–361 (2018). https://doi.org/10.1007/s10064-016-0983-2

    Article  Google Scholar 

  25. Baykan, N.A., Yılmaz, N., et al.: Case study in effects of color spaces for mineral identification. Sci. Res. Essays 5, 1243–1253 (2010)

    Google Scholar 

  26. Cengiz, C., Köse, E.: Modelling of color perception of different eye colors using artificial neural networks. Neural Comput. Appl. 23, 2323–2332 (2013). https://doi.org/10.1007/s00521-012-1185-x

    Article  Google Scholar 

  27. Al-Mohair, H.K., Mohamad-Saleh, J., Suandi, S.A.: Color space selection for human skin detection using color-texture features and neural networks. In: 2014 International Conference on Computer and Information Sciences (ICCOINS), pp. 1–6. IEEE (2014)

    Google Scholar 

  28. Rivera, M.M., Justo, M.O.A., Zezzatti, A.O.: Equations for describing behavior tables in thermodynamics using genetic programming: synthesizing the saturated water and steam table. Res. Comput. Sci. 1, 9–23 (2016)

    Google Scholar 

  29. Olmo, J.L., Romero, J.R., Ventura, S.: Swarm-based metaheuristics in automatic programming: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4, 445–469 (2014). https://doi.org/10.1002/widm.1138

    Article  Google Scholar 

  30. Ogawa, T., Oshiro, N., Kinjo, H.: Generating function of color information detection using genetic programming. Artif. Life Robot. 14, 480–484 (2009). https://doi.org/10.1007/s10015-009-0704-z

    Article  Google Scholar 

  31. Poli, R., Langdon, W.B., William, B., McPhee, N.F., Koza, J.R.: A field guide to genetic programming. [Lulu Press], lulu.com (2008)

    Google Scholar 

  32. Karimi, K., Dickson, N.G., Hamze, F.: A Performance Comparison of CUDA and OpenCL (2010)

    Google Scholar 

  33. Allusse, Y., Horain, P., Agarwal, A., Saipriyadarshan, C.: GpuCV: a GPU-accelerated framework for image processing and computer vision. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5359, pp. 430–439. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89646-3_42

    Chapter  Google Scholar 

  34. Davis, L.: Handbook of genetic algorithms. Van Nostrand Reinhold (1991)

    Google Scholar 

  35. Evers, G.I., Ghalia, M.B.: Regrouping particle swarm optimization: a new global optimization algorithm with improved performance consistency across benchmarks. In: 2009 IEEE International Conference on System, Man and Cybernetics, pp. 3901–3908 (2009). https://doi.org/10.1109/ICSMC.2009.5346625

  36. Jamian, J.J., Abdullah, M.N., Mokhlis, H., et al.: Global particle swarm optimization for high dimension numerical functions analysis. J. Appl. Math. 2014, e329193 (2014). https://doi.org/10.1155/2014/329193

    Article  MathSciNet  MATH  Google Scholar 

  37. Clerc, M.: Particle Swarm Optimization. ISTE, London (2006)

    Book  Google Scholar 

  38. Palupi Rini, D., Mariyam Shamsuddin, S., Sophiyati Yuhaniz, S.: Particle swarm optimization: technique, system and challenges. Int. J. Comput. Appl. 14, 19–27 (2011). https://doi.org/10.5120/1810-2331

    Article  Google Scholar 

  39. Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O.: Neural network design (1996)

    Google Scholar 

  40. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)

    Google Scholar 

  41. Weise, T.: Global optimization algorithms-theory and application. Self-published 2 (2009)

    Google Scholar 

  42. Rivera, M.M., Ramos, M.P., Mora, J.L.O.: Automatic generator of decoupling blocks using genetic programming. In: Elleithy, K., Sobh, T. (eds.) New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering. LNEE, vol. 312, pp. 281–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-06764-3_35

    Chapter  Google Scholar 

  43. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput. 5, 17–26 (2001). https://doi.org/10.1109/4235.910462

    Article  MATH  Google Scholar 

  44. Martín Montes Rivera, M.O.A.J.: Path follower algorithm for a Nao humanoid robot. In: Iliana Castro Liera, M.C.L. (eds.) Investigación y Desarrollo en Robótica y Computación. Instituto Tecnológico de la Paz, pp. 168–174 (2016)

    Google Scholar 

  45. Gonzalez, R.C., Woods, R.E., Richard, E.: Digital Image Processing. Prentice Hall (2008)

    Google Scholar 

  46. Bovik, A.C., Alan, C.: Handbook of Image and Video Processing. Elsevier Academic Press (2005)

    Google Scholar 

  47. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature. Geosci. Model. Dev. 7, 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Montes Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rivera, M.M., Padilla, A., Gallegos, J.C.P., Canul-Reich, J., Zezzatti, A.O., de Luna, M.A.M. (2019). Performance of Human Proposed Equations, Genetic Programming Equations, and Artificial Neural Networks in a Real-Time Color Labeling Assistant for the Colorblind. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science(), vol 11835. Springer, Cham. https://doi.org/10.1007/978-3-030-33749-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33749-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33748-3

  • Online ISBN: 978-3-030-33749-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics