Abstract
Visual analytics relies heavily on two-dimensional graphical representations. Going beyond 2D is useful as we can utilize additional dimensions to present complex data sets but requires more user efforts to navigate/rotate to the appropriate views. Moreover, multidimensional visual analytics in immersed environments has not been fully explored. In this paper, we present a virtual reality model for visualizing multidimensional data in parallel coordinates, called VRParaSet. Our approach stacks polylines traveling in the similar paths between two consecutive dimensions. We anchor the lines at the vertices to reduce occlusions, offer esthetic appearance, and reveal data-based structures not evident in 2D panels or contours. The proposed model is compared to its 2D and 3D equivalences through a user study of 19 participants. The results show that the virtual reality model, while potentially useful, requires a lot of cares, especially on navigation and interaction within the virtual space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ngo, K.: A-Frame (2018). https://aframe.io/
AlteredQualia: Stereoeffect (2018). http://alteredqualia.com
Marcos, D., Ngo, D.G.K.: Supermedium (2018). https://www.supermedium.com/
van Dam, A., Laidlaw, D.H., Simpson, R.M.: Experiments in immersive virtual reality for scientific visualization. Comput. Graphics 26, 535–555 (2002)
Dang, T.N., Murray, P., Forbes, A.G.: PathwayMatrix: visualizing binary relationships between proteins in biological pathways. BMC Proc. 9(6), S3 (2015)
Dang, T.N., Wilkinson, L.: ScagExplorer: exploring scatterplots by their scagnostics. In: Proceedings IEEE Pacific Visualization Symposium, PACIFICVIS 2014, pp. 73–80. IEEE Computer Society, Washington, DC, USA (2014). https://doi.org/10.1109/PacificVis.2014.42
Dang, T.N., Wilkinson, L., Anand, A.: Stacking graphic elements to avoid over-plotting. IEEE Trans. Visual Comput. Graphics 16(6), 1044–1052 (2010). https://doi.org/10.1109/TVCG.2010.197
Dasgupta, A., Kosara, R.: Pargnostics: screen-space metrics for parallel coordinates. IEEE Trans. Visual Comput. Graphics 16, 1017–2626 (2010)
Davies, J.: Parallel sets: a visualisation technique for multidimensional categorical data (2018). https://www.jasondavies.com/parallel-sets/
Donalek, C., et al.: Immersive and collaborative data visualization using virtual reality platforms. CoRR abs/1410.7670 (2014). http://arxiv.org/abs/1410.7670
Dübel, S., Röhlig, M., Schumann, H., Trapp, M.: 2D and 3D presentation of spatial data: a systematic review. In: 2014 IEEE VIS International Workshop on 3DVis (3DVis), pp. 11–18, November 2014. https://doi.org/10.1109/3DVis.2014.7160094
Friendly, M., Denis, D.: Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization: An Illustrated Chronology of Innovations. Statistical Consulting Service, York University (2008). https://books.google.com/books?id=cTjCjwEACAAJ
Google: Google cardboard (2018). https://vr.google.com/cardboard/
Gustafsson, M., Odd, O.: Virtual reality data visualization: concepts, technologies and more. Master’s thesis, Halmstad University (2018)
idVL, T.: Vrparallelset (2018). https://git.io/fjjDw
idVL, T.: Vrparallelset aframe (2018). https://git.io/fjjDV
Mboya, A.M.: Data visualization in virtual reality - a VR demo project, December 2017. https://medium.com/inborn-experience/data-visualization-in-virtual-reality-a-vr-demo-project-a31c577aaefc
Metzler, K.: Experimenting with data visualization in VR, June 2018. http://ocean.sagepub.com/blog/2018/6/20/experimenting-with-data-visualization-in-vr
Moran, A., Gadepally, V., Hubbell, M., Kepner, J.: Improving big data visual analytics with interactive virtual reality. In: 2015 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2015)
Mrdoob: Three.js (2018). https://threejs.org
NewVantage-Partners: Big data executive survey 2017 (2017). http://newvantage.com/wp-content/uploads/2017/01/Big-Data-Executive-Survey-2017-Executive-Summary.pdf
Ramette, A.: Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62(2), 142–160 (2007)
Ribarsky, W., Bolter, J., den Bosch, A.O., van Teylingen, R.: Visualization and analysis using virtual reality. IEEE Comput. Graphics Appl. 94(1), 10–12 (2002)
Singh, A., Saraswat, S., Faujdar, N.: Analyzing titanic disaster using machine learning algorithms. In: 2017 International Conference on Computing, Communication and Automation (ICCCA), pp. 406–411, May 2017. https://doi.org/10.1109/CCAA.2017.8229835
Sullivan, P.: Graph-based data visualization in virtual reality: a comparison of user experiences. Master’s thesis, California Polytechnic State University (2016)
Nguyen, V.T., Hite, R., Dang, T.: Web-based virtual reality development in classroom: from learner’s perspectives. In: 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 11–18, December 2018. https://doi.org/10.1109/AIVR.2018.00010
Facebook Technologies: Oculus rift (2018). https://www.oculus.com/rift/
W3C: Deviceorientation (2018). https://w3c.github.io/deviceorientation/
Wilkinson, L., Anand, A., Grossman, R.: Graph-theoretic scagnostics. In: Proceedings of the IEEE Information Visualization 2005, pp. 157–164. IEEE Computer Society Press (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Nguyen, N.V.T., Virgen, L., Dang, T. (2019). VRParaSet: A Virtual Reality Model for Visualizing Multidimensional Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-33723-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33722-3
Online ISBN: 978-3-030-33723-0
eBook Packages: Computer ScienceComputer Science (R0)